Advertisement

What Does an Ontology Engineering Community Look Like? A Systematic Analysis of the schema.org Community

  • Samantha Kanza
  • Alex Stolz
  • Martin Hepp
  • Elena Simperl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)

Abstract

We present a systematic analysis of participation and interactions within the community behind schema.org, one of the largest and most relevant ontology engineering projects in recent times. Previous work conducted in this space has focused on ontology collaboration tools, and the roles that different contributors play within these projects. This paper takes a broader view and looks at the entire life cycle of the collaborative process to gain insights into how new functionality is proposed and accepted, and how contributors engage with one another based on real-world data. The analysis resulted in several findings. First, the collaborative ontology engineering roles identified in previous studies with a much stronger link to ontology editors apply to community interaction contexts as well. In the same time, the participation inequality is less pronounced than the 90-9-1 rule for Internet communities. In addition, schema.org seems to facilitate a form of collaboration that is friendly towards newcomers, whose concerns receive as much attention from the community as those of their longer-serving peers.

Keywords

Collaborative ontology engineering GitHub schema.org Community analysis Social computing Mixed methods 

Notes

Acknowledgements

This work has been conducted in the context of the Data Stories Project: EPSRC (EP/P025676/1) and the WDAqua Project: (Marie Skłodowska-Curie Grant Agreement No 642795).

References

  1. 1.
    Alobaid, A., Garijo, D., Poveda-Villalón, M., Pérez, I.S., Corcho, O.: OnToology, a tool for collaborative development of ontologies. In: ICBO (2015)Google Scholar
  2. 2.
    Basca, C., Corlosquet, S., Cyganiak, R., Fernández, S., Schandl, T.: Neologism: easy vocabulary publishing (2008)Google Scholar
  3. 3.
    Dellschaft, K., Engelbrecht, H., Barreto, J.M., Rutenbeck, S., Staab, S.: Cicero: tracking design rationale in collaborative ontology engineering. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 782–786. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68234-9_58CrossRefGoogle Scholar
  4. 4.
    Ducheneaut, N.: Socialization in an open source software community: a socio-technical analysis. Comput. Support. Coop. Work (CSCW) 14(4), 323–368 (2005)CrossRefGoogle Scholar
  5. 5.
    Falconer, S., Tudorache, T., Noy, N.F.: An analysis of collaborative patterns in large-scale ontology development projects. In: Proceedings of the 6th International Conference on Knowledge Capture, pp. 25–32. ACM (2011)Google Scholar
  6. 6.
    Gil, Y., Knight, A., Zhang, K., Zhang, L., Sethi, R.: An initial analysis of semantic wikis. In: Proceedings of the Companion Publication of the 2013 International Conference on Intelligent User Interfaces Companion, IUI 2013 Companion, pp. 109–110. ACM (2013)Google Scholar
  7. 7.
    Gil, Y., Ratnakar, V.: Knowledge capture in the wild: a perspective from semantic wiki communities. In: Proceedings of the Seventh International Conference on Knowledge Capture, K-CAP 2013, pp. 49–56. ACM (2013)Google Scholar
  8. 8.
    Guha, R.V., Brickley, D., Macbeth, S.: schema.org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)CrossRefGoogle Scholar
  9. 9.
    Jamali, S., Rangwala, H.: Digging Digg: comment mining, popularity prediction, and social network analysis. In: 2009 International Conference on Web Information Systems and Mining, WISM 2009, pp. 32–38. IEEE (2009)Google Scholar
  10. 10.
    Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.: Swoop: a web ontology editing browser. Web Semant. Sci. Serv. Agents World Wide Web 4(2), 144–153 (2006)CrossRefGoogle Scholar
  11. 11.
    Kraut, R.E., Resnick, P., Kiesler, S., Burke, M., Chen, Y., Kittur, N., Konstan, J., Ren, Y., Riedl, J.: Building Successful Online Communities: Evidence-Based Social Design. Mit Press, Cambridge (2012)Google Scholar
  12. 12.
    Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic MediaWiki. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 935–942. Springer, Heidelberg (2006).  https://doi.org/10.1007/11926078_68CrossRefGoogle Scholar
  13. 13.
    Lave, J., Wenger, E.: Legitimate peripheral participation in communities of practice. In: Supporting Lifelong Learning, vol. 1, pp. 111–126 (2002)Google Scholar
  14. 14.
    Lima, A., Rossi, L., Musolesi, M.: Coding together at scale: GitHub as a collaborative social network. In: ICWSM (2014)Google Scholar
  15. 15.
    Müller-Birn, C., Karran, B., Lehmann, J., Luczak-Rösch, M.: Peer-production system or collaborative ontology engineering effort: what is wikidata? In: Proceedings of the 11th International Symposium on Open Collaboration, p. 20. ACM (2015)Google Scholar
  16. 16.
    Nielsen, J.: Participation inequality: encouraging more users to contribute (2006)Google Scholar
  17. 17.
    Petersen, N., Coskun, G., Lange, C.: TurtleEditor: an ontology-aware web-editor for collaborative ontology development. In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp. 183–186. IEEE (2016)Google Scholar
  18. 18.
    Pinto, H.S., Staab, S., Tempich, C.: DILIGENT: towards a fine-grained methodology for DIstributed, Loosely-controlled and evolvInG engineering of oNTologies. In: Proceedings of the 16th European Conference on Artificial Intelligence, pp. 393–397. IOS Press (2004)Google Scholar
  19. 19.
    Pope, C., Ziebland, S., Mays, N., et al.: Analysing qualitative data. Bmj 320(7227), 114–116 (2000)CrossRefGoogle Scholar
  20. 20.
    Schmidt, K., Bannon, L.: Taking CSCW seriously. Comput. Support. Coop. Work (CSCW) 1(1), 7–40 (1992)CrossRefGoogle Scholar
  21. 21.
    Schober, D., Malone, J., Stevens, R.: Practical experiences in concurrent, collaborative ontology building using collaborative Protégé. In: ICBO, p. 147 (2009)Google Scholar
  22. 22.
    Simperl, E., Luczak-Rösch, M.: Collaborative ontology engineering: a survey. Knowl. Eng. Rev. 29(1), 101–131 (2014)CrossRefGoogle Scholar
  23. 23.
    Strohmaier, M., Walk, S., Pöschko, J., Lamprecht, D., Tudorache, T., Nyulas, C., Musen, M.A., Noy, N.F.: How ontologies are made: studying the hidden social dynamics behind collaborative ontology engineering projects. Web Semant. Sci. Serv. Agents World Wide Web 20, 18–34 (2013)CrossRefGoogle Scholar
  24. 24.
    Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit: collaborative ontology development for the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 221–235. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-48005-6_18CrossRefMATHGoogle Scholar
  25. 25.
    Tinati, R., Van Kleek, M., Simperl, E., Luczak-Rösch, M., Simpson, R., Shadbolt, N.: Designing for citizen data analysis: a cross-sectional case study of a multi-domain citizen science platform. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 4069–4078. ACM (2015)Google Scholar
  26. 26.
    Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for evaluating contribution in GitHub. In: Proceedings of the 36th International Conference on Software Engineering, pp. 356–366. ACM (2014)Google Scholar
  27. 27.
    Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: WebProtégé: a collaborative ontology editor and knowledge acquisition tool for the web. Semant. Web 4(1), 89–99 (2013)Google Scholar
  28. 28.
    Von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization in open source software innovation: a case study. Res. Policy 32(7), 1217–1241 (2003)CrossRefGoogle Scholar
  29. 29.
    Wagstrom, P., Jergensen, C., Sarma, A.: Roles in a networked software development ecosystem: a case study in GitHub (2012)Google Scholar
  30. 30.
    Walk, S., Esín-Noboa, L., Helic, D., Strohmaier, M., Musen, M.A.: How users explore ontologies on the web: a study of NCBO’s BioPortal usage logs. In: Proceedings of the 26th International Conference on World Wide Web, pp. 775–784. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  31. 31.
    Walk, S., Singer, P., Noboa, L.E., Tudorache, T., Musen, M.A., Strohmaier, M.: Understanding how users edit ontologies: comparing hypotheses about four real-world projects. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 551–568. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25007-6_32CrossRefGoogle Scholar
  32. 32.
    Walk, S., Singer, P., Strohmaier, M., Tudorache, T., Musen, M.A., Noy, N.F.: Discovering beaten paths in collaborative ontology-engineering projects using Markov chains. J. Biomed. Inform. 51, 254–271 (2014)CrossRefGoogle Scholar
  33. 33.
    Wang, H., Tudorache, T., Dou, D., Noy, N.F., Musen, M.A.: Analysis of user editing patterns in ontology development projects. In: Meersman, R., Panetto, H., Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) OTM 2013. LNCS, vol. 8185, pp. 470–487. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41030-7_34CrossRefGoogle Scholar
  34. 34.
    Yang, M.C., Rim, H.C.: Identifying interesting twitter contents using topical analysis. Expert Syst. Appl. 41(9), 4330–4336 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of SouthamptonSouthamptonUK
  2. 2.Universitaet der Bundeswehr MunichMunichGermany

Personalised recommendations