Answers Partitioning and Lazy Joins for Efficient Query Relaxation and Application to Similarity Search

  • Sébastien FerréEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)


Query relaxation has been studied as a way to find approximate answers when user queries are too specific or do not align well with the data schema. We are here interested in the application of query relaxation to similarity search of RDF nodes based on their description. However, this is challenging because existing approaches have a complexity that grows in a combinatorial way with the size of the query and the number of relaxation steps. We introduce two algorithms, answers partitioning and lazy join, that together significantly improve the efficiency of query relaxation. Our experiments show that our approach scales much better with the size of queries and the number of relaxation steps, to the point where it becomes possible to relax large node descriptions in order to find similar nodes. Moreover, the relaxed descriptions provide explanations for their semantic similarity.


  1. 1.
    Chein, M., Mugnier, M.L.: Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge Processing. Springer, Heidelberg (2008). Scholar
  2. 2.
    Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)CrossRefGoogle Scholar
  3. 3.
    Colucci, S., Donini, F.M., Di Sciascio, E.: Common subsumbers in RDF. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI), vol. 8249, pp. 348–359. Springer, Cham (2013). Scholar
  4. 4.
    Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning. IEEE Trans. Knowl. Data Eng. 21(11), 1532–1543 (2009)CrossRefGoogle Scholar
  5. 5.
    Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF queries based on user and domain preferences. J. Intell. Inf. Syst. 33(3), 239 (2009)CrossRefGoogle Scholar
  6. 6.
    Elbassuoni, S., Ramanath, M., Weikum, G.: Query relaxation for entity-relationship search. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 62–76. Springer, Heidelberg (2011). Scholar
  7. 7.
    Ferilli, S., Basile, T.M.A., Biba, M., Di Mauro, N., Esposito, F.: A general similarity framework for horn clause logic. Fundamenta Informaticae 90(1–2), 43–66 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ferré, S., Cellier, P.: Graph-FCA in practice. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 107–121. Springer, Cham (2016). Scholar
  9. 9.
    Frosini, R., Calì, A., Poulovassilis, A., Wood, P.T.: Flexible query processing for SPARQL. Semant. Web 8(4), 533–563 (2017)CrossRefGoogle Scholar
  10. 10.
    Gaasterland, T.: Cooperative answering through controlled query relaxation. IEEE Expert 12(5), 48–59 (1997)CrossRefGoogle Scholar
  11. 11.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. J. Web Semant.: Sci. Serv. Agents 3, 158–182 (2005)CrossRefGoogle Scholar
  12. 12.
    Hermann, A., Ferré, S., Ducassé, M.: An interactive guidance process supporting consistent updates of RDFS graphs. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 185–199. Springer, Heidelberg (2012). Scholar
  13. 13.
    Horváth, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with lists and terms. Mach. Learn. 43(1–2), 53–80 (2001)CrossRefGoogle Scholar
  14. 14.
    Huang, H., Liu, C., Zhou, X.: Approximating query answering on RDF databases. World Wide Web 15(1), 89–114 (2012)CrossRefGoogle Scholar
  15. 15.
    Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 31–61. Springer, Heidelberg (2008). Scholar
  16. 16.
    May, W.: Information extraction and integration with Florid: the Mondial case study. Technical report 131, Universität Freiburg, Institut für Informatik (1999).
  17. 17.
    Rodríguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ Rennes, CNRS, IRISARennesFrance

Personalised recommendations