Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud

  • Mohammad Abdel-QaderEmail author
  • Ansgar Scherp
  • Iacopo Vagliano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10843)


Vocabularies are used for modeling data in Knowledge Graphs (KGs) like the Linked Open Data Cloud and Wikidata. During their lifetime, vocabularies are subject to changes. New terms are coined, while existing terms are modified or deprecated. We first quantify the amount and frequency of changes in vocabularies. Subsequently, we investigate to which extend and when the changes are adopted in the evolution of KGs. We conduct our experiments on three large-scale KGs: the Billion Triples Challenge datasets, the Dynamic Linked Data Observatory dataset, and Wikidata. Our results show that the change frequency of terms is rather low, but can have high impact due to the large amount of distributed graph data on the web. Furthermore, not all coined terms are used and most of the deprecated terms are still used by data publishers. The adoption time of terms coming from different vocabularies ranges from very fast (few days) to very slow (few years). Surprisingly, we could observe some adoptions before the vocabulary changes were published. Understanding the evolution of vocabulary terms is important to avoid wrong assumptions about the modeling status of data published on the web, which may result in difficulties when querying the data from distributed sources.



This work was supported by the EU’s Horizon 2020 programme under grant agreement H2020-693092 MOVING.


  1. 1.
    Abdel-Qader, M., Scherp, A.: Towards understanding the evolution of vocabulary terms in knowledge graphs. ArXiv e-prints, September 2017.
  2. 2.
    Abdel-Qader, M., Scherp, A.: Qualitative analysis of vocabulary evolution on the linked open data cloud. In: PROFILES Workshop Co-located with ESWC, vol. 1598. (2016)Google Scholar
  3. 3.
    Chawuthai, R., Takeda, H., Wuwongse, V., Jinbo, U.: Presenting and preserving the change in taxonomic knowledge for linked data. Semant. Web 7(6), 589–616 (2016)CrossRefGoogle Scholar
  4. 4.
    Dividino, R., Scherp, A., Gröner, G., Grotton, T.: Change-a-LOD: does the schema on the linked data cloud change or not? In: Consuming Linked Data Workshop Co-located with ISWC, vol. 1034. pp. 87–98. (2013)Google Scholar
  5. 5.
    Gottron, T., Knauf, M., Scherp, A.: Analysis of schema structures in the linked open data graph based on unique subject URIs, pay-level domains, and vocabulary usage. Distrib. Parallel Databases 33(4), 515–553 (2015)CrossRefGoogle Scholar
  6. 6.
    Guha, R.V., Brickley, D., Macbeth, S.: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)CrossRefGoogle Scholar
  7. 7.
    Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked data dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg (2013). Scholar
  8. 8.
    Käfer, T., Umbrich, J., Hogan, A., Polleres, A.: Towards a dynamic linked data observatory. In: LDOW Co-located with WWW (2012)Google Scholar
  9. 9.
    Meusel, R., Bizer, C., Paulheim, H.: A web-scale study of the adoption and evolution of the vocabulary over time. In: International Conference on Web Intelligence, Mining and Semantics, p. 15. ACM (2015)Google Scholar
  10. 10.
    Mihindukulasooriya, N., Poveda-Villalón, M., García-Castro, R., Gómez-Pérez, A.: Collaborative ontology evolution and data quality - an empirical analysis. In: Dragoni, M., Poveda-Villalón, M., Jimenez-Ruiz, E. (eds.) OWLED/ORE -2016. LNCS, vol. 10161, pp. 95–114. Springer, Cham (2017). Scholar
  11. 11.
    Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On detecting high-level changes in RDF/S KBs. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 473–488. Springer, Heidelberg (2009). Scholar
  12. 12.
    Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G., Stavrakas, Y.: A flexible framework for understanding the dynamics of evolving RDF datasets. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 495–512. Springer, Cham (2015). Scholar
  13. 13.
    Schaible, J., Gottron, T., Scherp, A.: Survey on common strategies of vocabulary reuse in linked open data modeling. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 457–472. Springer, Cham (2014). Scholar
  14. 14.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Cham (2014). Scholar
  15. 15.
    Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked open vocabularies (LOV): a gateway to reusable semantic vocabularies on the web. Semant. Web 8(3), 437–452 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Christian-Albrechts UniversityKielGermany
  2. 2.ZBW – Leibniz Information Centre for EconomicsKielGermany

Personalised recommendations