Advertisement

Thermolysis of Metal Chelates in Polymer Matrices

  • Igor E. Uflyand
  • Gulzhian I. Dzhardimalieva
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

In recent years, nanostructured materials (nanocomposites), consisting of a polymer matrix (thermoplastic, thermosets, or elastomers), filled with small amounts of metal or metal oxide NPs, have attracted the considerable attention of researchers. Organic matrix, i.e., polymer, forms the basis of such nanocomposites, while NPs are dispersed in the polymer matrix and have a significant and unique influence on its macroscopic properties and are also able to interact with the polymer matrix at the molecular level. It is known that the combination of the advantages of simple processing and structural flexibility of polymers with optical properties and stability provided by inorganic material has strong synergistic effects.

References

  1. 1.
    A.D. Pomogailo, A.S. Rozenberg, I.E. Uflyand, Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers) (Khimiya, Moscow, 2000)Google Scholar
  2. 2.
    A.D. Pomogailo, G.I. Dzhardimalieva, V.N. Kestelman, Macromolecular Metal Carboxylates and their Nanocomposites (Springer, Heidelberg, 2010)CrossRefGoogle Scholar
  3. 3.
    A.D. Pomogailo, G.I. Dzhardimalieva, Nanostructured Materials Preparation via Condensation Ways (Springer, Dordrecht, 2014)CrossRefGoogle Scholar
  4. 4.
    A.D. Pomogailo, G.I. Dzhardimalieva, Metallopolymeric Hybrid Nanocomposites (Nauka, Moscow, 2015)Google Scholar
  5. 5.
    V.V. Vodnik, E.S. Džunuzović, J.V. Džunuzović, Synthesis and characterization of polystyrene based nanocomposites, in Polystyrene: Synthesis, Characteristics and Applications, ed. by C. Lynwood (Nova Science Publishers, Inc., New York, 2014)Google Scholar
  6. 6.
    B.C. Sih, M.O. Wolf, Chem. Commun. 3375 (2005)Google Scholar
  7. 7.
    S. Rangelov, A. Pispas, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications (CRC, Boca Raton, 2013)CrossRefGoogle Scholar
  8. 8.
    L.H. Mancini, C.L. Esposito, Nanocomposites: Preparation, Properties and Performance (Nova Science Publication Inc, New York, 2008)Google Scholar
  9. 9.
    G. Carotenuto, L. Nicolais, B. Martorana, P. Perlo, Metal-polymer nanocomposite synthesis: Novel ex situ and in situ approaches, in Metal-Polymer Nanocomposites, eds. by L. Nicolais, G. Carotenuto (John Wiley and Sons, Hoboken, New Jersey, 2004), p. 319CrossRefGoogle Scholar
  10. 10.
    M.T. Ramesan, K. Suhailath, Role of nanoparticles on polymer composites, in Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends, eds. by S. Thomas, R. Mishra, N. Kalarikkal (Elsevier, Amsterdam, 2017), pp. 301–326CrossRefGoogle Scholar
  11. 11.
    G. Kickelbick, Hybrid Materials: Synthesis, Characterization, and Applications (John Wiley & Sons, New York, 2007)Google Scholar
  12. 12.
    K. Du, C.R. Knutson, E. Glogowski, K.D. McCarthy, R. Shenhar, V.M. Rotello, M.T. Tuominen, T. Emrick, T.P. Russell, A.D. Dinsmore, Small 5, 1974 (2009)PubMedCrossRefGoogle Scholar
  13. 13.
    R. Liu, Materials 7, 2747 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    J.N. Freitas, A.S. Gonçalves, A.F. Nogueira, Nanoscale 6, 6371 (2014)PubMedCrossRefGoogle Scholar
  15. 15.
    T. Dimopoulos, All-oxide solar cells. The future of semiconductor oxides in next-generation solar cells, in The Future of Semiconductor Oxides in Next-Generation Solar Cells, ed. by M. Lira-Cantu (Elsevier, Amsterdam, 2017), pp. 439–480Google Scholar
  16. 16.
    R. De Palma, G. Reekmans, C. Liu, R. Wirix-Speetjens, W. Laureyn, O. Nilsson, L. Lagae, Anal. Chem. 79, 8669 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    M. Kuhara, H. Takeyama, T. Tanaka, T. Matsunaga, Anal. Chem. 76, 6207 (2004)PubMedCrossRefGoogle Scholar
  18. 18.
    S.L. Lu, G.X. Cheng, H.C. Zhang, X.S. Pang, J. Appl. Polym. Sci. 99, 3241 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Lei, W. Wang, L. Chen, X. Li, B. Yi, L. Deng, Enzyme Microb. Technol. 35, 15 (2004)CrossRefGoogle Scholar
  20. 20.
    H. Qian, Z. Lin, H. Xu, M. Chen, Biotechnol. Prog. 25, 376 (2009)PubMedCrossRefGoogle Scholar
  21. 21.
    S. Yang, K. Lien, K. Huang, H. Lei, G. Lee, Biosens. Bioelectron. 24, 861 (2008)PubMedGoogle Scholar
  22. 22.
    T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, J. Controlled Release 114, 343 (2006)CrossRefGoogle Scholar
  23. 23.
    D.K. Kim, S.J. Park, J.H. Lee, Y.Y. Jeong, S.Y. Jon, J. Am. Chem. Soc. 129, 7661 (2007)PubMedCrossRefGoogle Scholar
  24. 24.
    C.-J. Liu, C.-H. Wang, C.-C. Chien, C.-H. Wang, C.-C. Chien, T.-Y. Yang, S.-T. Chen, W.-H. Leng, C.-F. Lee, K.-H. Lee, Y. Hwu, Y.-C. Lee, C.-L. Cheng, C.-S. Yang, Y.J. Chen, J.H. Je, G. Margaritondo, Nanotechnology 19, 295104 (2008)PubMedCrossRefGoogle Scholar
  25. 25.
    S.K. Seol, D. Kim, S. Jung, W.S. Chang, J.T. Kim, J. Nanomater. 6 (2013), Article ID 531760Google Scholar
  26. 26.
    B.D. Warheit, Toxicolog. Sci. 101, 183 (2008)CrossRefGoogle Scholar
  27. 27.
    L. Canesi, C. Ciacci, R. Fabbri, A. Marcomini, G. Pojana, G. Gallo, Marine. Environ. Res. 76, 16 (2012)Google Scholar
  28. 28.
    A.L. Fernandez, A. Fernandez, J. Blasco, TrAC Trends Anal. Chem. 32, 40 (2012)CrossRefGoogle Scholar
  29. 29.
    T.B. Lee, F.J. Ranville, J. Hazard. Mater. 213–214, 434 (2012)PubMedCrossRefGoogle Scholar
  30. 30.
    S. Balog, L.R. Lorenzo, A.C. Monnier, M.R. Obiols, B.R. Rothen, P. Schurtenberger, A.F. Petri, Nanoscale 7, 5991 (2015)PubMedCrossRefGoogle Scholar
  31. 31.
    Y. Liu, K.M. Shipton, J. Ryan, D.E. Kaufman, S. Franzen, L.D. Feldheim, Anal. Chem. 79, 2221 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    V.J. Jokerst, T. Lobovkina, N.R. Zare, S.S. Gambhir, Nanomedicine 6, 715 (2011)PubMedCrossRefGoogle Scholar
  33. 33.
    J. Manson, D. Kumar, B. Meenan, D. Dixon, Gold Bull. 44, 99 (2011)CrossRefGoogle Scholar
  34. 34.
    L.H.T. Nghiem, T.T. Nguyen, E. Fort, P.T. Nguyen, N.M.T. Hoang, Q.T. Nguyen, N.H. Tran, Adv. Nat. Sci. 3, 015002 (2012)Google Scholar
  35. 35.
    H. Bonnemann, R.M. Richards, Eur. J. Inorg. Chem. 1434, 2455 (2001)CrossRefGoogle Scholar
  36. 36.
    X. Sun, S. Dong, E. Wang, Mat. Chem. Phys. 96, 29 (2006)CrossRefGoogle Scholar
  37. 37.
    L. Persano, A. Camposeo, F. Di Benedetto, R. Stabile, A.M. Laera, E. Piscopiello, L. Tapfer, D. Pisignano, Adv. Mater. 24, 5320 (2012)PubMedCrossRefGoogle Scholar
  38. 38.
    V.V. Vodnik, J.V. Vuković, J.M. Nedeljković, Colloid Polym. Sci. 287, 847 (2009)CrossRefGoogle Scholar
  39. 39.
    T.S. Radoman, J.V. Džunuzović, K.B. Jeremić, A.D. Marinković, P.M. Spasojević, I.G. Popović, E.S. Džunuzović, Hem. Ind. 67, 923 (2013)CrossRefGoogle Scholar
  40. 40.
    A.D. Marinković, T. Radoman, E.S. Džunuzović, J.V. Džunuzović, P. Spasojević, B. Isailović, B. Bugarski, Hem. Ind. 67, 913 (2013)CrossRefGoogle Scholar
  41. 41.
    A. Laachachi, E. Leroy, M. Cochez, M. Ferriol, J.M. Lopez Cuesta, Polym. Degrad. Stab. 89, 344 (2005)CrossRefGoogle Scholar
  42. 42.
    M. Inkyo, Y. Tokunaga, T. Tahara, T. Iwaki, F. Iskandar, C.J. Hogan Jr., K. Okuyama, Ind. Eng. Chem. Res. 47, 2597 (2008)CrossRefGoogle Scholar
  43. 43.
    A.J. Gu, G.Z. Liang, J. Appl. Polym. Sci. 89, 3954 (2003)CrossRefGoogle Scholar
  44. 44.
    S.M. Pourmortazavi, I. Kohsari, M.B. Teimouri, S.S. Hajimirsadeghi, Mater. Lett. 61, 4670 (2007)CrossRefGoogle Scholar
  45. 45.
    E. Themistou, A. Kanari, C.S. Patrickios, J. Polym. Sci.: Part A: Polym. Chem. 45, 5811 (2007)Google Scholar
  46. 46.
    S.H. Kim, F. Nederberg, L. Zhang, C.G. Wade, R.M. Waymouth, J.L. Hedric, Nano Lett. 8, 294 (2008)PubMedCrossRefGoogle Scholar
  47. 47.
    J.D. Menczel, R.B. Prime (eds.), Thermal Analysis of Polymers. Fundamentals and Applications (Wiley, London, 2009)Google Scholar
  48. 48.
    P. Greil, Adv. Eng. Mater. 2, 339 (2000)CrossRefGoogle Scholar
  49. 49.
    S. Bernard, M. Weinmann, P. Gerstel, P. Viele, F. Aldinger, J. Mater. Chem. 15, 289 (2005)CrossRefGoogle Scholar
  50. 50.
    S. Duperrier, C. Gervais, S. Bernard, D. Cornu, F. Babboneau, C. Balan, P. Miele, Macromolecules 40, 1018 (2007)CrossRefGoogle Scholar
  51. 51.
    X. Chen, S. Mao, Chem. Rev. 107, 2891 (2007)PubMedCrossRefGoogle Scholar
  52. 52.
    V. Ilić, Z. Šaponjić, V. Vodnik, S. Lazović, S. Dimitrijević, P. Jovančić, J.M. Nedeljković, M. Radetić, Ind. Eng. Chem. Res. 49, 7287 (2010)CrossRefGoogle Scholar
  53. 53.
    D. Mihailović, Z. Šaponjić, V. Vodnik, B. Potkonjak, P. Jovančić, J.M. Nedeljković, M. Radetić, Polym. Adv. Technol. 22, 2244 (2011)CrossRefGoogle Scholar
  54. 54.
    V. Ilić, Z. Šaponjić, V. Vodnik, B. Potkonjak, P. Jovančić, J. Nedeljković, M. Radetić, Carbohyd. Polym. 78, 564 (2009)CrossRefGoogle Scholar
  55. 55.
    V. Ilić, Z. Šaponjić, V. Vodnik, D. Mihailović, P. Jovančić, J. Nedeljković, M. Radetić, Fiber. Polym. 10, 650 (2009)CrossRefGoogle Scholar
  56. 56.
    M. Radetić, V. Ilić, V. Vodnik, S. Dimitrijević, P. Jovančić, Z. Šaponjić, J.M. Nedeljković, Polym. Adv. Technol. 19, 1816 (2008)CrossRefGoogle Scholar
  57. 57.
    V. Ilić, Z. Šaponjić, V. Vodnik, D. Mihailović, P. Jovančić, J.M. Nedeljković, M. Radetić, J. Serb. Chem. Soc. 74, 349 (2009)CrossRefGoogle Scholar
  58. 58.
    Y. Prosanov, F.F. Matvienko, Phys. Solid State 53, 824 (2011)CrossRefGoogle Scholar
  59. 59.
    V. Ilić, Z. Šaponjić, V. Vodnik, R. Molina, S. Dimitrijević, P. Jovančić, J.M. Nedeljković, M. Radetić, J. Mater. Sci. 44, 3983 (2009)CrossRefGoogle Scholar
  60. 60.
    E. Džunuzović, V. Vodnik, K. Jeremić, J.M. Nedeljković, Mater. Lett. 63, 908 (2009)CrossRefGoogle Scholar
  61. 61.
    V.V. Vodnik, Z. Šaponjić, J.V. Džunuzović, U. Bogdanović, M. Mitrić, J. Nedeljković, Mater. Res. Bull. 48, 52 (2013)CrossRefGoogle Scholar
  62. 62.
    V.V. Vodnik, N.D. Abazović, Z.A. Stojanović, M. Marinović-Cincović, M. Mitrić, M.I. Čomor, J. Comp. Mater. 46, 987 (2012)CrossRefGoogle Scholar
  63. 63.
    V. Vodnik, D.K. Božanić, J.V. Džunuzović, I. Vukoje, J. Nedeljković, Polym. Compos. 33, 782 (2012)CrossRefGoogle Scholar
  64. 64.
    V.V. Vodnik, D.K. Božanić, E. Džunuzović, J. Vuković, J.M. Nedeljković, Eur. Polym. J. 46, 137 (2010)CrossRefGoogle Scholar
  65. 65.
    Ch. Pandis, E. Logakis, A. Kyritsis, P. Pissis, V.V. Vodnik, E. Džunuzović, J.M. Nedeljković, V. Djoković, J.C. Rodriguez Hernandez, J.L. Gomez Ribelles, Eur. Polym. J. 47, 1514 (2011)CrossRefGoogle Scholar
  66. 66.
    I.D. Vukoje, V.V. Vodnik, J.V. Džunuzović, E.S. Džunuzović, M.T. Marinović-Cincović, K. Jeremić, J.M. Nedeljković, Mater. Res. Bull. 49, 434 (2014)CrossRefGoogle Scholar
  67. 67.
    E.S. Džunuzović, J.V. Džunuzović, T.S. Radoman, M.T. Marinović-Cincović, LjB Nikolić, K.B. Jeremić, J.M. Nedeljković, Polym. Compos. 34, 399 (2013)CrossRefGoogle Scholar
  68. 68.
    E. Džunuzović, K. Jeremić, J.M. Nedeljkovic, Eur. Polym. J. 43, 3719 (2007)CrossRefGoogle Scholar
  69. 69.
    E. Džunuzović, M. Marinović-Cincović, K. Jeremić, J. Nedeljković, Polym. Degrad. Stab. 94, 701 (2009)CrossRefGoogle Scholar
  70. 70.
    E.S. Džunuzović, J.V. Džunuzović, A.D. Marinković, M.T. Marinović-Cincović, K.B. Jeremić, J.M. Nedeljković, Eur. Polym. J. 48, 1385 (2012)CrossRefGoogle Scholar
  71. 71.
    E.S. Džunuzović, M.T. Marinović-Cincović, J.V. Džunuzović, K.B. Jeremić, J.M. Nedeljković, Hem. Ind. 64, 473 (2010)CrossRefGoogle Scholar
  72. 72.
    E. Džunuzović, M. Marinović-Cincović, J. Vuković, K. Jeremić, J.M. Nedeljković, Polym. Compos. 30, 737 (2009)CrossRefGoogle Scholar
  73. 73.
    E. Džunuzović, M. Marinović-Cincović, K. Jeremić, J. Vuković, J. Nedeljković, Polym. Degrad. Stab. 93, 77 (2008)CrossRefGoogle Scholar
  74. 74.
    T. Rath, G. Trimmel, Hybrid Mater. 1, 15 (2013)Google Scholar
  75. 75.
    A.D. Pomogailo, Ros. Khim. Zh. (Mendeleev Chem. J.) 46, 64 (2002)Google Scholar
  76. 76.
    J.Z. Liang, Polym. Int. 51, 1473 (2002)CrossRefGoogle Scholar
  77. 77.
    E. Arici, H. Hoppe, F. Schaffler, D. Meissner, M.A. Malik, N.S. Sariciftci, Appl. Phys. A 79, 59 (2004)CrossRefGoogle Scholar
  78. 78.
    W. Yue, S. Han, R. Peng, W. Shen, H. Geng, F. Wu, S. Tao, M. Wang, J. Mater. Chem. 20, 7570 (2010)CrossRefGoogle Scholar
  79. 79.
    J.J. Wang, Y.Q. Wang, F.F. Cao, Y.G. Guo, L.J. Wan, J. Am. Chem. Soc. 132, 12218 (2010)PubMedCrossRefGoogle Scholar
  80. 80.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425 (2002)PubMedCrossRefGoogle Scholar
  81. 81.
    W.U. Huynh, J.J. Dittmer, W.C. Libby, G.L. Whiting, A.P. Alivisatos, Adv. Funct. Mater. 13, 73 (2003)CrossRefGoogle Scholar
  82. 82.
    D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110, 389 (2010)PubMedCrossRefGoogle Scholar
  83. 83.
    A.J. Moule, L. Chang, C. Thambidurai, R. Vidu, P. Stroeve, J. Mater. Chem. 22, 2351 (2012)CrossRefGoogle Scholar
  84. 84.
    A.M. Smith, S. Nie, Acc. Chem. Res. 43, 190 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Y. Zhou, M. Eck, M. Kruger, Energy Environ. Sci. 3, 1851 (2010)CrossRefGoogle Scholar
  86. 86.
    M.J. Greaney, S. Das, D.H. Webber, S.E. Bradforth, R.L. Brutchey, ACS Nano 6, 4222 (2012)PubMedCrossRefGoogle Scholar
  87. 87.
    R. Sanz, C. Luna, M. Hernandez-Velez, M. Vazquez, D. Lopez, C. Mijangos, Nanotechnology 16, S278 (2005)CrossRefGoogle Scholar
  88. 88.
    S.C. Hsu, W.T. Whang, C.H. Hung, P.C. Chiang, Y.N. Hsiao, Macromol. Chem. Phys. 206, 291 (2005)CrossRefGoogle Scholar
  89. 89.
    L.F. Cai, X.B. Huang, M.Z. Rong, W.H. Ruan, M.Q. Zhang, Macromol. Chem. Phys. 207, 2093 (2006)CrossRefGoogle Scholar
  90. 90.
    A. Stavrinadis, R. Beal, J.M. Smith, H.E. Assender, A.A.R. Watt, Adv. Mater. 20, 3105 (2008)CrossRefGoogle Scholar
  91. 91.
    S. Dayal, N. Kopidakis, D.C. Olson, D.S. Ginley, G. Rumbles, J. Am. Chem. Soc. 131, 17726 (2009)PubMedCrossRefGoogle Scholar
  92. 92.
    H.C. Liao, S.Y. Chen, D.M. Liu, Macromolecules 42, 6558 (2009)CrossRefGoogle Scholar
  93. 93.
    H.C. Leventis, S.P. King, A. Sudlow, M.S. Hill, K.C. Molloy, S.A. Haque, Nano Lett. 10, 1253 (2010)PubMedCrossRefGoogle Scholar
  94. 94.
    N. Bansal, L.X. Reynolds, A. MacLachlan, T. Lutz, R.S. Ashraf, W. Zhang, C.B. Nielsen, I. McCulloch, D.G. Rebois, T. Kirchartz, M.S. Hill, K.C. Molloy, J. Nelson, S.A. Haque, Sci. Rep. 3, 1531 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    M.T. Khan, A. Kaur, S.K. Dhawan, S. Chand, J. Appl. Phys. 110, 044509, 7 (2011)Google Scholar
  96. 96.
    F. Nicolais, G. Carotenuto, Recent Pat. Mater. Sci. 1, 1 (2008)CrossRefGoogle Scholar
  97. 97.
    G. Carotenuto, A. Longo, S. De Nicola, F. Nicolais, Advanced thermochromic plastics for optical temperature sensing, in Chromic Materials, Phenomena and Their Technological Applications, ed. by P.R. Somani (Applied Science Innovation, Pune, India, 2010)Google Scholar
  98. 98.
    I.C. McNeill, J.J. Liggat, Polym. Degrad. Stabil. 29, 93 (1990)CrossRefGoogle Scholar
  99. 99.
    I.C. McNeill, J.J. Liggat, Polym. Degrad. Stabil. 37, 25 (1992)CrossRefGoogle Scholar
  100. 100.
    S.M. Humphrey, M.E. Grass, S.E. Habas, L. Niesz, G.A. Somorjai, T.D. Tilley, Nano Lett. 7, 785 (2007)PubMedCrossRefGoogle Scholar
  101. 101.
    Y. Zhang, M.E. Grass, S.E. Habas, F. Tao, T. Zhang, P. Yang, G.A. Somorjai, J. Phys. Chem. C 111, 12243 (2007)CrossRefGoogle Scholar
  102. 102.
    A. Manzke, A. Plettl, U. Wiedwald, L. Han, P. Ziemann, E. Schreiber, U. Ziener, N. Vogel, C.K. Weiss, K. Landfester, K. Fauth, J. Biskupek, U. Kaiser, Chem. Mater. 24, 1048 (2012)CrossRefGoogle Scholar
  103. 103.
    G. Carotenuto, M. Palomba, L. Nicolais, Adv. Polym. Technol. 31, 242 (2012)CrossRefGoogle Scholar
  104. 104.
    G. Carotenuto, M. Palomba, L. Nicolais, Sci. Eng. Compos. Mater. 19, 195 (2012)CrossRefGoogle Scholar
  105. 105.
    H. Wakayama, H. Yonekura, Y. Kawai, ACS Macro Lett. 2, 284 (2013)CrossRefGoogle Scholar
  106. 106.
    V.T.A. Nguyen, M. Gauthier, O. Sandre, Nanomaterials 4, 628 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    H.-L. Liu, S.P. Ko, J.-H. Wu, M.-H. Jung, J.H. Min, J.H. Lee, B.H. An, Y.K. Kim, J. Magn. Magn. Mater. 310, e815 (2007)CrossRefGoogle Scholar
  108. 108.
    C. Yang, Q. Shao, J. He, B. Jiang, Langmuir 26, 5179 (2010)PubMedCrossRefGoogle Scholar
  109. 109.
    L. Jiang, J. Kim, J. Appl. Polym. Sci. 101, 186 (2006)CrossRefGoogle Scholar
  110. 110.
    M.C. Alves, G. Tourillon, J. Phys. Chem. 100, 7566 (1996)CrossRefGoogle Scholar
  111. 111.
    M. Shariq, P. Majeric, B. Friedrich, B. Budic, D. Jenko, A.R. Dixit, R. Rudolf, J. Clust. Sci. 28, 1647 (2017)CrossRefGoogle Scholar
  112. 112.
    W.J.E. Beek, M.M. Wienk, M. Kemerink, X. Yang, R.A.J. Janssen, J. Phys. Chem. B 109, 9505 (2005)PubMedCrossRefGoogle Scholar
  113. 113.
    S.D. Oosterhout, M.M. Wienk, S.S. van Bavel, R. Thiedmann, L.J.A. Koster, J. Gilot, J. Loos, V. Schmidt, R.A.J. Janssen, Nat. Mater. 8, 818 (2009)PubMedCrossRefGoogle Scholar
  114. 114.
    T. Gershon, Mater. Sci. Technol. 27, 1357 (2011)CrossRefGoogle Scholar
  115. 115.
    J. Boucle, P. Ravirajan, J. Nelson, J. Mater. Chem. 17, 3141 (2007)CrossRefGoogle Scholar
  116. 116.
    W. van Beek, R.A.J. Janssen, Hybrid polymer-inorganic photovoltaic cells, in Hybrid Nanocomposites for Nanotechnology, ed. by L. Merhari (Springer, Boston, 2009), pp. 321–385CrossRefGoogle Scholar
  117. 117.
    X. Peng, L. Zhang, Y. Chen, F. Li, W. Zhou, Appl. Surf. Sci. 256, 2948 (2010)CrossRefGoogle Scholar
  118. 118.
    K. Yuan, F. Li, L. Chen, Y. Chen, Thin Solid Films 520, 6299 (2012)CrossRefGoogle Scholar
  119. 119.
    K. Yuan, F. Li, Y. Chen, X. Wang, L. Chen, J. Mater. Chem. 21, 11886 (2011)Google Scholar
  120. 120.
    C.-H. Lai, W.-F. Lee, I.-C. Wu, C.-C. Kang, D.-Y. Chen, L.-J. Chen, P.-T. Chou, J. Mater. Chem. 19, 7284 (2009)CrossRefGoogle Scholar
  121. 121.
    M. Wang, Y. Lian, X. Wang, Curr. Appl. Phys. 9, 189 (2009)CrossRefGoogle Scholar
  122. 122.
    P.S. Nair, T. Radhakrishna, N. Revaprasadu, G.A. Kolawole, A.S. Luyt, V.J. Djokovic, Mater. Sci. 40, 4407 (2005)CrossRefGoogle Scholar
  123. 123.
    I.J.L. Plante, T.W. Zeid, P. Yang, T. Mokari, J. Mater. Chem. 20, 6612 (2010)CrossRefGoogle Scholar
  124. 124.
    S. Shen, Y. Zhang, L. Peng, B.Y. Xu, M. Du, H. Deng, Q.Wang Xu, Crys. Eng. Commun. 13, 4572 (2011)CrossRefGoogle Scholar
  125. 125.
    J.H. Warner, A.A.R. Watt, Mater. Lett. 60, 2375 (2006)CrossRefGoogle Scholar
  126. 126.
    N.E. Coates, H. Zhou, S. Kramer, L. Li, D. Moses, Adv. Mater. 22, 5366 (2010)PubMedCrossRefGoogle Scholar
  127. 127.
    E. Maier, T. Rath, W. Hass, O. Werzer, R. Saf, F. Hofer, D. Meissner, O. Volobujeva, S. Bereznev, E. Mellikov, H. Amenitsch, R. Resel, G. Trimmel, Sol. Energy Mater. Sol. Cells C 95, 1354 (2011)CrossRefGoogle Scholar
  128. 128.
    S. Dowland, T. Lutz, A. Ward, S.P. King, A. Sudlow, M.S. Hill, K.C. Molloy, S.A. Haque, Adv. Mater. 23, 2739 (2011)PubMedCrossRefGoogle Scholar
  129. 129.
    T. Rath, M. Edler, W. Haas, A. Fischereder, S. Moscher, A. Schenk, R. Trattnig, M. Sezen, G. Mauthner, A. Pein, D. Meischler, K. Bartl, R. Saf, N. Bansal, S.A. Haque, F. Hofer, E.J.W. List, G. Trimmel, Adv. Energy Mater. 1, 1046 (2011)CrossRefGoogle Scholar
  130. 130.
    M. Arar, M. Gruber, M. Edler, W. Haas, F. Hofer, N. Bansal, L.X. Reynolds, S.A. Haque, K. Zojer, G. Trimmel, T. Rath, Nanotechnology 24, 484005 (2013)PubMedCrossRefGoogle Scholar
  131. 131.
    N. Bansal, F.T.F. O’Mahony, T. Lutz, S.A. Haque, Adv. Energy Mater. 3, 986 (2013)CrossRefGoogle Scholar
  132. 132.
    F. Todescato, A.S.R. Chesman, A. Martucci, R. Signorini, J.J. Jasieniak, Chem. Mater. 24, 2117 (2012)CrossRefGoogle Scholar
  133. 133.
    M. Helgesen, R. Søndergaard, F.C. Krebs, J. Mater. Chem. 20, 36 (2010)CrossRefGoogle Scholar
  134. 134.
    I. Gur, N.A. Fromer, C.-P. Chen, A.G. Kanaras, A.P. Alivisatos, Nano Lett. 7, 409 (2007)PubMedCrossRefGoogle Scholar
  135. 135.
    C. de Mello, Donegá. Chem. Soc. Rev. 40, 1512 (2011)CrossRefGoogle Scholar
  136. 136.
    F. Gao, S. Ren, J. Wang, Energy Environ. Sci. 6, 2020 (2013)CrossRefGoogle Scholar
  137. 137.
    R. Zhou, J. Xue, ChemPhysChem 13, 2471 (2012)PubMedCrossRefGoogle Scholar
  138. 138.
    B.R. Saunders, J. Colloid Interface Sci. 369, 1 (2012)PubMedCrossRefGoogle Scholar
  139. 139.
    P. Reiss, E. Couderc, J. De Girolamo, A. Pron, Nanoscale 3, 446 (2011)PubMedCrossRefGoogle Scholar
  140. 140.
    M. Wright, A. Uddin, Sol. Energy Mater. Sol. Cells 107, 87 (2012)CrossRefGoogle Scholar
  141. 141.
    L. Zhao, Z. Lin, Adv. Mater. 24, 4353 (2012)PubMedCrossRefGoogle Scholar
  142. 142.
    E. Martińez-Ferrero, J. Albero, E. Palomares, J. Phys. Chem. Lett. 1, 3039 (2010)CrossRefGoogle Scholar
  143. 143.
    K.F. Jeltsch, M. Schädel, J.-B. Bonekamp, P. Niyamakom, F. Rauscher, H.W.A. Lademann, I. Dumsch, S. Allard, U. Scherf, K. Meerholz, Adv. Funct. Mater. 22, 397 (2012)CrossRefGoogle Scholar
  144. 144.
    S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, Nano Lett. 11, 3998 (2011)PubMedCrossRefGoogle Scholar
  145. 145.
    Z. Chen, H. Zhang, X. Du, X. Cheng, X. Chen, Y. Jiang, B. Yang, Energy Environ. Sci. 6, 1597 (2013)CrossRefGoogle Scholar
  146. 146.
    J. Seo, M.J. Cho, D. Lee, A.N. Cartwright, P.N. Prasad, Adv. Mater. 23, 3984 (2011)PubMedCrossRefGoogle Scholar
  147. 147.
    R. Zhou, R. Stalder, D. Xie, W. Cao, Y. Zheng, Y. Yang, M. Plaisant, P.H. Holloway, K.S. Schanze, J.R. Reynolds, J. Xue, ACS Nano 7, 4846 (2013)PubMedCrossRefGoogle Scholar
  148. 148.
    Z. Liu, Y. Sun, J. Yuan, H. Wei, X. Huang, L. Han, W. Wang, H. Wang, W. Ma, Adv. Mater. 25, 5772 (2013)PubMedCrossRefGoogle Scholar
  149. 149.
    A.A.R. Watt, P. Meredith, J.D. Riches, S. Atkinson, H. Rubinsztein-Dunlop, Curr. Appl. Phys. 4, 320 (2004)CrossRefGoogle Scholar
  150. 150.
    A. Watt, E. Thomsen, P. Meredith, H. Rubinsztein-Dunlop, Chem. Commun. 2334 (2004)Google Scholar
  151. 151.
    A. Watt, H. Rubinsztein-Dunlop, P. Meredith, Mater. Lett. 59, 3033 (2005)CrossRefGoogle Scholar
  152. 152.
    A.A.R. Watt, D. Blake, J.H. Warner, E.A. Thomsen, E.L. Tavenner, H. Rubinsztein-Dunlop, P. Meredith, J. Phys. D: Appl. Phys. 38, 2006 (2005)CrossRefGoogle Scholar
  153. 153.
    A. Watt, T. Eichmann, H. Rubinsztein-Dunlop, P. Meredith, Appl. Phys. Lett. 87, 253109-1-3 (2005)CrossRefGoogle Scholar
  154. 154.
    A. Stavrinadis, S. Xu, J.H. Warner, J.L. Hutchison, J.M. Smith, A.A.R. Watt, Nanotechnology 20, 445608-1-7 (2009)PubMedCrossRefGoogle Scholar
  155. 155.
    H.-C. Liao, N. Chantarat, S.-Y. Chen, C.-H. Peng, J. Electrochem. Soc. 158, E67 (2011)CrossRefGoogle Scholar
  156. 156.
    P. Sonar, K.P. Sreenivasan, T. Maddanimath, K. Vijayamohanan, Mater. Res. Bull. 41, 198 (2006)CrossRefGoogle Scholar
  157. 157.
    R.K. Bhardwaj, H.S. Kushwaha, J. Gaur, T. Upreti, V. Bharti, V. Gupta, N. Chaudhary, G.D. Sharma, K. Banerjee, S. Chand, Mater. Lett. 89, 195 (2012)CrossRefGoogle Scholar
  158. 158.
    E.A. Lewis, E.A. Lewis, P.D. McNaughter, Z. Yin, Y. Chen, J.R. Brent, S.A. Saah, J. Raftery, J.A.M. Awudza, M.A. Malik, P. O’Brien, S.J. Haigh, Chem. Mater. 27, 2127 (2015)CrossRefGoogle Scholar
  159. 159.
    A.J. MacLachlan, T. Rath, U.B. Cappel, S.A. Dowland, H. Amenitsch, A.-C. Knall, C. Buchmaier, G. Trimmel, J. Nelson, S.A. Haque, Adv. Funct. Mater. 25, 409 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    A.K. Bansal, F. Antolini, M.T. Sajjad, L. Stroea, R. Mazzaro, S.G. Ramkumar, K.-J. Kass, S. Allard, U. Scherf, I.D.W. Samuel, Phys. Chem. Chem. Phys. 16, 9556 (2014)PubMedCrossRefGoogle Scholar
  161. 161.
    V. Agrawal, K. Jain, L. Arora, S. Chand, J. Nanopart. Res. 15, 1697 (2013)CrossRefGoogle Scholar
  162. 162.
    V. Kaltenhauser, T. Rath, W. Haas, A. Torvisco, S.K. Müller, B. Friedel, B. Kunert, R. Saf, F. Hofer, G. Trimmel, J. Mater. Chem. C 1, 7825 (2013)CrossRefGoogle Scholar
  163. 163.
    C. Fradler, T. Rath, S. Dunst, I. Letofsky-Papst, R. Saf, B. Kunert, F. Hofer, R. Resel, G. Trimmel, Sol. Energy Mater. Sol. Cells 124, 117 (2014)CrossRefGoogle Scholar
  164. 164.
    M. Arar, A. Pein, W. Haas, F. Hofer, K. Norrman, F.C. Krebs, T. Rath, G. Trimmel, J. Phys. Chem. C 116, 19191 (2012)CrossRefGoogle Scholar
  165. 165.
    M. Jäger, R. Trattnig, M. Postl, W. Haas, B. Kunert, R. Resel, F. Hofer, A. Klug, G. Trimmel, E.J.W. List, J. Polym. Sci. Part B: Polym. Phys. 51, 1400 (2013)CrossRefGoogle Scholar
  166. 166.
    T. Rath, V. Kaltenhauser, W. Haas, A. Reichmann, F. Hofer, G. Trimmel, Sol. Energy Mater. Sol. Cells 114, 38 (2013)CrossRefGoogle Scholar
  167. 167.
    V. Kaltenhauser, T. Rath, M. Edler, A. Reichmann, G. Trimmel, RSC Adv. 3, 18643 (2013)CrossRefGoogle Scholar
  168. 168.
    L.X. Reynolds, T. Lutz, S. Dowland, A. MacLachlan, S. King, S.A. Haque, Nanoscale 4, 1561 (2012)PubMedCrossRefGoogle Scholar
  169. 169.
    F.C. Krebs, N. Espinosa, M. Hösel, R.R. Søndergaard, M. Jørgensen, Adv. Mater. 26, 29 (2014)PubMedCrossRefGoogle Scholar
  170. 170.
    S.B. Darling, F. You, RSC Adv. 3, 17633 (2013)CrossRefGoogle Scholar
  171. 171.
    S.A. Dowland, L.X. Reynolds, A. MacLachlan, U.B. Cappel, S.A. Haque, J. Mater. Chem. A 1, 13896 (2013)CrossRefGoogle Scholar
  172. 172.
    W. Chen, M.P. Nikiforov, S.B. Darling, Energy Environ. Sci. 5, 8045 (2012)CrossRefGoogle Scholar
  173. 173.
    Y. Zhou, M. Eck, C. Men, F. Rauscher, P. Niyamakom, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, M. Krüger, Sol. Energy Mater. Sol. Cells 95, 3227 (2011)CrossRefGoogle Scholar
  174. 174.
    J. Yang, A. Tang, R. Zhou, J. Xue, Sol. Energy Mater. Sol. Cells 95, 476 (2011)CrossRefGoogle Scholar
  175. 175.
    H. Ma, H. Gao, Z. Zhou, W. Xu, F. Ren, Polym. Polym. Compos. 23, 435 (2015)CrossRefGoogle Scholar
  176. 176.
    A. Kharkwal, S.N. Sharma, K. Jain, L. Arora, P. Chawla, A.K. Singh, S. Chand, Colloid Polym. Sci. 291, 2607 (2013)CrossRefGoogle Scholar
  177. 177.
    P.D. McNaughter, J.C. Bear, A.G. Mayes, I.P. Parkin, P. O’Brien, R. Soc, Open Sci. 4, 170383 (2017)Google Scholar
  178. 178.
    L. Persano, A. Camposeo, A.M. Laera, F.D. Benedetto, V. Resta, L. Tapfer, D. Pisignano, In situ thermal, photon, and electron-beam synthesis of polymer nanocomposites, in Synthesis Techniques for Polymer Nanocomposites, ed. by V. Mittal (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014) doi:  https://doi.org/10.1002/9783527670307.ch7CrossRefGoogle Scholar
  179. 179.
    D. Saikia, P.K. Saikia, P.K. Gogoi, M.R. Das, P. Sengupta, M.V. Shelke, Mater. Chem. Phys. 131, 223 (2011)CrossRefGoogle Scholar
  180. 180.
    C. Krause, D. Scheunemann, J. Parisi, H. Borchert, J. Appl. Phys. 118, 205501 (2015)CrossRefGoogle Scholar
  181. 181.
    T.C. Vagvala, S.S. Pandey, Y. Ogomi, T. Ma, S. Hayase, Inorg. Chim. Acta 435, 292 (2015)CrossRefGoogle Scholar
  182. 182.
    T.C. Vagvala, S.S. Pandey, S. Krishnamurthy, S. Hayase, Z. Anorg, Allg. Chem. 642, 134 (2016)CrossRefGoogle Scholar
  183. 183.
    A. Jana, E. Scheer, S. Polarz, Beilstein J. Nanotechnol. 8, 688 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    S. Yang, R.E. Bachman, X. Feng, K. Müllen, Acc. Chem. Res. 46, 116 (2013)CrossRefPubMedGoogle Scholar
  185. 185.
    S. Yang, Y. Sun, L. Chen, Y. Hernandez, X. Feng, K. Müllen, Sci. Rep. 2, 427 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    A. Chen, A. Kong, X. Fan, X. Yang, C. Li, Z. Chen, Y. Shan, Int. J. Hydrogen Energy 42, 16557 (2017)CrossRefGoogle Scholar
  187. 187.
    Y.Y. Liang, M.G. Schwab, L.J. Zhi, E. Mugnaioli, U. Kolb, X.L. Feng, K. Müllen, J. Am. Chem. Soc. 132, 15030 (2010)PubMedCrossRefGoogle Scholar
  188. 188.
    E. Maier, A. Fischereder, W. Haas, G. Mauthner, J. Albering, T. Rath, F. Hofer, E.J.W. List, G. Trimmel, Thin Solid Films 519, 4201 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistrySouthern Federal UniversityRostov-on-DonRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations