Advertisement

Early Detection and Monitoring of Vascular Damage

  • Ciro Santoro
  • Roberta Esposito
  • Covadonga Fernández-Golfín
  • Jose Luis Zamorano Gomez
  • Maurizio Galderisi
Chapter
Part of the Current Clinical Pathology book series (CCPATH)

Abstract

Vascular toxicity is one of the possible manifestations of anticancer-related cardiotoxicity in oncologic patients. Possible mechanisms of vascular toxicity include vasomotor, smooth muscle, and endothelial detrimental action on the vessels. Type II vascular dysfunction, which reflects coronary and peripheral vasospasm and finds relief in vasodilator therapies, requires careful attention in the acute phase. Conversely, type I vascular toxicity needs a well-planned, long-term follow-up. These different types of vascular damage can determine a broad spectrum of pathological conditions (arterial and venous thrombosis) which may become clinically overt in short-term periods or even appear progressively (peripheral vascular disease, stroke, coronary artery disease). Accordingly, vascular imaging tools shall be promoted for detecting early these manifestations and driving patient’s management. Accordingly, promptly detection of these possible adverse effects by vascular imaging should be strongly promoted to introduce efficient prophylactic therapies when indicated. It is fundamental to diagnose vascular complications and treat them aggressively in order to reduce deleterious adverse effects of anticancer therapy.

Keywords

Anticancer drug Vascular toxicity Doppler echocardiography Vessels Coronary artery disease 

References

  1. 1.
    Herrmann J. Tyrosine kinase inhibitors and vascular toxicity: impetus for a classification system? Curr Oncol Rep. 2016;18:33.CrossRefGoogle Scholar
  2. 2.
    Di Nisio M, Ferrante N, Feragalli B, De Tursi M, Iacobelli S, Cuccurullo F, et al. Arterial thrombosis in ambulatory cancer patients treated with chemotherapy. Thromb Res. 2011;127:382–3.CrossRefGoogle Scholar
  3. 3.
    Hall PS, Harshman LC, Srinivas S, Witteles RM. The frequency and severity of cardiovascular toxicity from targeted therapy in advanced renal cell carcinoma patients. JACC Heart Fail. 2013;1:72–8.CrossRefGoogle Scholar
  4. 4.
    Ewer MS, Gluck S. A woman’s heart: the impact of adjuvant endocrine therapy on cardiovascular health. Cancer. 2009;115:1813–26.CrossRefGoogle Scholar
  5. 5.
    Haddad TC, Greeno EW. Chemotherapy-induced thrombosis. Thromb Res. 2006;118:555–68.CrossRefGoogle Scholar
  6. 6.
    Khorana AA. Risk assessment and prophylaxis for VTE in cancer patients. J Natl Compr Cancer Netw. 2011;9:789–97.CrossRefGoogle Scholar
  7. 7.
    Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111:4902–7.CrossRefGoogle Scholar
  8. 8.
    Stefenelli T, Kuzmits R, Ulrich W, Glogar D. Acute vascular toxicity after combination chemotherapy with cisplatin, vinblastine, and bleomycin for testicular cancer. Eur Heart J. 1988;9:552–6.CrossRefGoogle Scholar
  9. 9.
    Staff S, Lagerstedt E, Seppanen J, Maenpaa J. Acute digital ischemia complicating gemcitabine and carboplatin combination chemotherapy for ovarian cancer. Acta Obstet Gynecol Scand. 2011;90:1296–7.CrossRefGoogle Scholar
  10. 10.
    Vogelzang NJ, Bosl GJ, Johnson K, Kennedy BJ. Raynaud’s phenomenon: a common toxicity after combination chemotherapy for testicular cancer. Ann Intern Med. 1981;95:288–92.CrossRefGoogle Scholar
  11. 11.
    Kuhar CG, Mesti T, Zakotnik B. Digital ischemic events related to gemcitabine: report of two cases and a systematic review. Radiol Oncol. 2010;44:257–61.CrossRefGoogle Scholar
  12. 12.
    Zeidman A, Dicker D, Mittelman M. Interferon-induced vasospasm in chronic myeloid leukaemia. Acta Haematol. 1998;100:94–6.CrossRefGoogle Scholar
  13. 13.
    Valent P, Hadzijusufovic E, Schernthaner GH, Wolf D, Rea D, le Coutre P. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125:901–6.CrossRefGoogle Scholar
  14. 14.
    Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–801.CrossRefGoogle Scholar
  15. 15.
    Aichberger KJ, Herndlhofer S, Schernthaner GH, Schillinger M, Mitterbauer-Hohendanner G, Sillaber C, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011;86:533–9.CrossRefGoogle Scholar
  16. 16.
    Quintas-Cardama A, Kantarjian H, Cortes J. Nilotinib-associated vascular events. Clin Lymphoma Myeloma Leuk. 2012;12:337–40.CrossRefGoogle Scholar
  17. 17.
    Levato L, Cantaffa R, Kropp MG, Magro D, Piro E, Molica S. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in chronic myeloid leukemia: a single institution study. Eur J Haematol. 2013;90:531–2.CrossRefGoogle Scholar
  18. 18.
    Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.CrossRefGoogle Scholar
  19. 19.
    Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367:2075–88.CrossRefGoogle Scholar
  20. 20.
    Nicolini FE, Gagnieu M-C, Heiblig M, Blond E, Legros L, Guillermin Y, et al. Cardio-vascular events occurring on ponatinib in chronic phase chronic myeloid leukemia patients, preliminary analysis of a multicenter cohort. Blood. 2013;122:4020.Google Scholar
  21. 21.
    Tefferi A. Nilotinib treatment-associated accelerated atherosclerosis: when is the risk justified? Leukemia. 2013;27:1939–40.CrossRefGoogle Scholar
  22. 22.
    Coon EA, Zalewski NL, Hoffman EM, Tefferi A, Flemming KD. Nilotinib treatment-associated cerebrovascular disease and stroke. Am J Hematol. 2013;88:534–5.CrossRefGoogle Scholar
  23. 23.
    Tefferi A, Letendre L. Nilotinib treatment-associated peripheral artery disease and sudden death: yet another reason to stick to imatinib as front-line therapy for chronic myelogenous leukemia. Am J Hematol. 2011;86:610–1.CrossRefGoogle Scholar
  24. 24.
    Chaosuwannakit N, D’Agostino R, Hamilton CA, Lane KS, Ntim WO, Lawrence J, et al. Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol. 2010;28:166–72.CrossRefGoogle Scholar
  25. 25.
    .Jenei Z, Bardi E, Magyar MT, Horvath A, Paragh G, Kiss C. Anthracycline causes impaired vascular endothelial function and aortic stiffness in long term survivors of childhood cancer. Pathol Oncol Res 2013;19(3):375–383.CrossRefGoogle Scholar
  26. 26.
    Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33(35):4210–8.CrossRefGoogle Scholar
  27. 27.
    European Stroke Organisation, Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clement D, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:2851–906.CrossRefGoogle Scholar
  28. 28.
    Fokkema M, den Hartog AG, Bots ML, van der Tweel I, Moll FL, de Borst GJ. Stenting versus surgery in patients with carotid stenosis after previous cervical radiation therapy: systematic review and meta-analysis. Stroke. 2012;43:793–801.CrossRefGoogle Scholar
  29. 29.
    Stefan O, Vera N, Otto B, Heinz L, Wolfgang G. Stroke in cancer patients: a risk factor analysis. J Neurooncol. 2009;94:221–6.CrossRefGoogle Scholar
  30. 30.
    Sanon S, Lenihan DJ, Mouhayar E. Peripheral arterial ischemic events in cancer patients. Vasc Med. 2011;16:119–30.CrossRefGoogle Scholar
  31. 31.
    Ahn D, Brickner ME, Dowell J. Embolic stroke secondary to an indwelling catheter in a patient with a patent foramen ovale: a case report and review of the literature. Clin Adv Hematol Oncol. 2012;10:335–7.PubMedGoogle Scholar
  32. 32.
    Rogers LR. Cerebrovascular complications in patients with cancer. Semin Neurol. 2010;30:311–9.CrossRefGoogle Scholar
  33. 33.
    El Amrani M, Heinzlef O, Debroucker T, Roullet E, Bousser MG, Amarenco P. Brain infarction following 5-fluorouracil and cisplatin therapy. Neurology. 1998;51:899–901.CrossRefGoogle Scholar
  34. 34.
    Serrano-Castro PJ, Guardado-Santervas P, Olivares-Romero J. Ischemic stroke following cisplatin and 5-fluorouracil therapy: a transcranial Doppler study. Eur Neurol. 2000;44:63–4.CrossRefGoogle Scholar
  35. 35.
    Meattini I, Scotti V, Pescini F, Livi L, Sulprizio S, Palumbo V, et al. Ischemic stroke during cisplatin-based chemotherapy for testicular germ cell tumor: case report and review of the literature. J Chemother. 2010;22:134–6.CrossRefGoogle Scholar
  36. 36.
    Kuan AS, Teng CJ, Wu HH, Su VY, Chen YT, Chien SH, et al. Risk of ischemic stroke in patients with ovarian cancer: a nationwide population-based study. BMC Med. 2014;12:53.CrossRefGoogle Scholar
  37. 37.
    De Bruin ML, Dorresteijn LD, van’t Veer MB, Krol AD, van der Pal HJ, Kappelle AC, et al. Increased risk of stroke and transient ischemic attack in 5-year survivors of Hodgkin lymphoma. J Natl Cancer Inst. 2009;101:928–37.CrossRefGoogle Scholar
  38. 38.
    Louis EL, McLoughlin MJ, Wortzman G. Chronic damage to medium and large arteries following irradiation. J Can Assoc Radiol. 1974;25:94–104.PubMedGoogle Scholar
  39. 39.
    Fajardo LF. The pathology of ionizing radiation as defined by morphologic patterns. Acta Oncol. 2005;44:13–22.CrossRefGoogle Scholar
  40. 40.
    Farmakis D, Parissis J, Filippatos G. Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol. 2014;63:945–53.CrossRefGoogle Scholar
  41. 41.
    Seok JM, Kim SJ, Song P, Chung CS, Kim GM, Lee KH, et al. Clinical presentation and ischemic zone on MRI in cancer patients with acute ischemic stroke. Eur Neurol. 2012;68:368–76.CrossRefGoogle Scholar
  42. 42.
    Haugnes HS, Wethal T, Aass N, Dahl O, Klepp O, Langberg C, et al. Cardiovascular risk factors and morbidity in long-term survivors of testicular cancer: a 20-year follow-up study. J Clin Oncol. 2010;28:4649–57.CrossRefGoogle Scholar
  43. 43.
    Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014;15:47.CrossRefGoogle Scholar
  44. 44.
    Choueiri TK, Schutz FA, Je Y, Rosenberg JE, Bellmunt J. Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. J Clin Oncol. 2010;28:2280–5.CrossRefGoogle Scholar
  45. 45.
    McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100:167–75.CrossRefGoogle Scholar
  46. 46.
    Virmani R, Farb A, Carter AJ, Jones RM. Comparative pathology: radiation-induced coronary artery disease in man and animals. Semin Interv Cardiol. 1998;3:163–72.PubMedGoogle Scholar
  47. 47.
    Brosius FC 3rd, Waller BF, Roberts WC. Radiation heart disease. Analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3,500 rads to the heart. Am J Med. 1981;70:519–30.CrossRefGoogle Scholar
  48. 48.
    Veinot JP, Edwards WD. Pathology of radiation-induced heart disease: a surgical and autopsy study of 27 cases. Hum Pathol. 1996;27:766–73.CrossRefGoogle Scholar
  49. 49.
    McEniery PT, Dorosti K, Schiavone WA, Pedrick TJ, Sheldon WC. Clinical and angiographic features of coronary artery disease after chest irradiation. Am J Cardiol. 1987;60:1020–4.CrossRefGoogle Scholar
  50. 50.
    King V, Constine LS, Clark D, Schwartz RG, Muhs AG, Henzler M, et al. Symptomatic coronary artery disease after mantle irradiation for Hodgkin’s disease. Int J Radiat Oncol Biol Phys. 1996;36:881–9.CrossRefGoogle Scholar
  51. 51.
    Prosnitz RG, Hubbs JL, Evans ES, Zhou SM, Yu X, Blazing MA, et al. Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment. Cancer. 2007;110:1840–50.CrossRefGoogle Scholar
  52. 52.
    Gyenes G, Fornander T, Carlens P, Glas U, Rutqvist LE. Detection of radiation-induced myocardial damage by technetium-99m sestamibi scintigraphy. Eur J Nucl Med. 1997;24:286–92.PubMedGoogle Scholar
  53. 53.
    Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14:721–40.CrossRefGoogle Scholar
  54. 54.
    Kupeli S, Hazirolan T, Varan A, Akata D, Alehan D, Hayran M, et al. Evaluation of coronary artery disease by computed tomography angiography in patients treated for childhood Hodgkin’s lymphoma. J Clin Oncol. 2010;28:1025–30.CrossRefGoogle Scholar
  55. 55.
    Apter S, Shemesh J, Raanani P, Portnoy O, Thaler M, Zissin R, et al. Cardiovascular calcifications after radiation therapy for Hodgkin lymphoma: computed tomography detection and clinical correlation. Coron Artery Dis. 2006;17:145–51.CrossRefGoogle Scholar
  56. 56.
    Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.CrossRefGoogle Scholar
  57. 57.
    van Leeuwen-Segarceanu EM, Bos WJ, Dorresteijn LD, Rensing BJ, der Heyden JA, Vogels OJ, et al. Screening Hodgkin lymphoma survivors for radiotherapy induced cardiovascular disease. Cancer Treat Rev. 2011;37:391–403.CrossRefGoogle Scholar
  58. 58.
    Rademaker J, Schoder H, Ariaratnam NS, Strauss HW, Yahalom J, Steingart R, et al. Coronary artery disease after radiation therapy for Hodgkin’s lymphoma: coronary CT angiography findings and calcium scores in nine asymptomatic patients. AJR Am J Roentgenol. 2008;191:32–7.CrossRefGoogle Scholar
  59. 59.
    Kongbundansuk S, Hundley WG. Noninvasive imaging of cardiovascular injury related to the treatment of cancer. JACC Cardiovasc Imaging. 2014;7:824–38.CrossRefGoogle Scholar
  60. 60.
    Breccia M, Pregno P, Spallarossa P, Arboscello E, Ciceri F, Giorgi M, et al. Identification, prevention and management of cardiovascular risk in chronic myeloid leukaemia patients candidate to ponatinib: an expert opinion. Ann Hematol. 2017;96(4):549–58.CrossRefGoogle Scholar
  61. 61.
    Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol. 1997;146:483–94.CrossRefGoogle Scholar
  62. 62.
    Den Ruijter HM, Peters SA, Anderson TJ, Britton AR, Dekker JM, Eijkemans MJ, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012;308:796–803.CrossRefGoogle Scholar
  63. 63.
    Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37:2315–81.CrossRefGoogle Scholar
  64. 64.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.CrossRefGoogle Scholar
  65. 65.
    Raitakari OT, Celermajer DS. Flow-mediated dilatation. Br J Clin Pharmacol. 2000;50(5):397–404.CrossRefGoogle Scholar
  66. 66.
    Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Engl J Med. 2001;344:1608–21.CrossRefGoogle Scholar
  67. 67.
    Fowkes FG, Murray GD, Newman AB, Lee RJ. Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300:197–208.CrossRefGoogle Scholar
  68. 68.
    Tinana A, Mintz GS, Weissman NJ. Volumetric intravascular ultrasound quantification of the amount of atherosclerosis and calcium in nonstenotic arterial segments. Am J Cardiol. 2002;89:757–60.CrossRefGoogle Scholar
  69. 69.
    Iliescu CA, Grines CL, Herrmann J, Yang EH, Cilingiroglu M, Charitakis K, et al. SCAI Expert consensus statement: evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the Cardiological Society of India, and Sociedad Latino Americana de Cardiologıa Intervencionista). Catheter Cardiovasc Interv. 2016;87:E202–23.CrossRefGoogle Scholar
  70. 70.
    Armenian SH, Hudson MM, Mulder RL, Chen MH, Constine LS, Dwyer M, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16:e123–36.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ciro Santoro
    • 1
  • Roberta Esposito
    • 1
  • Covadonga Fernández-Golfín
    • 2
  • Jose Luis Zamorano Gomez
    • 2
  • Maurizio Galderisi
    • 1
  1. 1.Advanced Biomedical ScienceFederico II University HospitalNaplesItaly
  2. 2.Cardiology DepartmentRamon y Cajal University HospitalMadridSpain

Personalised recommendations