Advertisement

Haptic Material: A Holistic Approach for Haptic Texture Mapping

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10894)

Abstract

In this paper, we propose a new format for haptic texture mapping which is not dependent on the haptic rendering setup hardware. Our “haptic material” format encodes ten elementary haptic features in dedicated maps, similarly to “materials” used in computer graphics. These ten different features enable the expression of compliance, surface geometry and friction attributes through vibratory, cutaneous and kinesthetic cues, as well as thermal rendering. The diversity of haptic data allows various hardware to share this single format, each of them selecting which features to render depending on its capabilities.

Keywords

Texture Compliance Roughness Friction Temperature Haptic material 

References

  1. 1.
    Heckbert, P.: Survey of texture mapping. IEEE CG Appl. 6(11), 56–57 (1986)Google Scholar
  2. 2.
    Armstrong-Helouvry, B., Dupont, P., De Wit, C.C.: Survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)CrossRefGoogle Scholar
  3. 3.
    Kontarinis, D.A., Son, J.S., Peine, W., Howe, R.D.: A tactile shape sensing and display system for teleoperated manipulation. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 641–646 (1995)Google Scholar
  4. 4.
    Shimojo, M., Shinohara, M., Fukui, Y.: Human shape recognition performance for 3D tactile display. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 29(6), 637–64 (1999)CrossRefGoogle Scholar
  5. 5.
    Hollins, M., Risner, S.R.: Evidence for the duplex theory of tactile texture perception. Attention Percept. Psychophy. 62, 695–705 (2000)CrossRefGoogle Scholar
  6. 6.
    Bicchi, A., Scilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Robot. Autom. 16, 496–504 (2000)CrossRefGoogle Scholar
  7. 7.
    Lawrence, D.A., Pao, L.Y., Dougherty, A.M., Salada, M.A., Pavlou, Y.: Rate-hardness: a new performance metric for haptic interfaces. IEEE Trans. Robot. Autom. 16, 357–371 (2000)CrossRefGoogle Scholar
  8. 8.
    Okamura, A.M., Cutkosky, M.R., Dennerlein, J.T.: Reality-based models for vibration feedback in virtual environments. IEEE/ASME Trans. Mechatron. 6(3), 245–252 (2001)CrossRefGoogle Scholar
  9. 9.
    Jones, L. A., Berris, M.: Material discrimination and thermal perception. In: 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 171–178 (2003)Google Scholar
  10. 10.
    Hwang, J.D., Williams, M.D., Niemeyer, G.: Toward event-based haptics: rendering contact using open-loop force pulses. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, p. 24 (2004)Google Scholar
  11. 11.
    Hayward, V.: Display of haptic shape at different scales. In: Proceedings of Eurohaptics, pp. 20–27 (2004)Google Scholar
  12. 12.
    Kammermeier, P., Kron, A., Hoogen, J., Schmidt, G.: Display of holistic haptic sensations by combined tactile and kinesthetic feedback. Presence: Teleoper. Virtual Environ. 13(1), 1–15 (2004)CrossRefGoogle Scholar
  13. 13.
    Kim, L., Sukhatme, G.S., Desbrun, M.: A haptic-rendering technique based on hybrid surface representation. IEEE Comput. Graph. Appl. 24(2), 66–75 (2004)CrossRefGoogle Scholar
  14. 14.
    Dostmohamed, H., Hayward, V.: Trajectory of contact region on the fingerpad gives the illusion of haptic shape. Exp. Brain Res. 164(3), 387–394 (2005)CrossRefGoogle Scholar
  15. 15.
    Yang, G.H., Kyung, K.U., Jeong, Y.J., Kwon, D.S.: Novel haptic mouse system for holistic haptic display and potential of vibrotactile stimulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1980–1985 (2005)Google Scholar
  16. 16.
    Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Fixed-step friction simulation: from classical Coulomb model to modern continuous models. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1009–1016 (2005)Google Scholar
  17. 17.
    Kuchenbecker, K.J., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Graph. 12(2), 219–230 (2006)CrossRefGoogle Scholar
  18. 18.
    Tiest, W.M.B., Kappers, A.M.L.: Haptic and visual perception of roughness. Acta Psychol. 124(2), 177–189 (2007)CrossRefGoogle Scholar
  19. 19.
    Konyo, M., Yamada, H., Okamoto, S., Tadokoro, S.: Alternative display of friction represented by tactile stimulation without tangential force. In: Haptics: Perception, Devices and Scenarios, pp. 619–629 (2008)Google Scholar
  20. 20.
    Wakita, W., Murakami, K., Ido, S.: A texturebased haptic model design with 3D brush. In: 18th International Conference on Artificial Reality and Telexistence, pp. 51–56 (2008)Google Scholar
  21. 21.
    Friedman, R.M., Hester, K.D., Green, B.G., LaMotte, R.H.: Magnitude estimation of softness. Exp. Brain Res. 191(2), 133–142 (2008)CrossRefGoogle Scholar
  22. 22.
    Drif, A., Le Mercier, B., Kheddar, A.: Design of a multilevel haptic display. In: Bicchi, A., Buss, M., Ernst, M.O., Peer, A. (eds.) The Sense of Touch and Its Rendering, vol. 45, pp. 207–224. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79035-8_10CrossRefGoogle Scholar
  23. 23.
    Bergmann Tiest, W.M., Kappers, A.M.L.: Cues for haptic perception of compliance. IEEE Trans. Haptics 2(4), 189–199 (2009)CrossRefGoogle Scholar
  24. 24.
    Theoktisto Colmenares, V. A., Fairn Gonzlez, M., and Navazo lvaro, I.: A hybrid rugosity mesostructure (HRM) for rendering fine haptic detail (2009)Google Scholar
  25. 25.
    Wijntjes, M.W., Sato, A., Hayward, V., Kappers, A.M.: Local surface orientation dominates haptic curvature discrimination. IEEE Trans. Haptics 2(2), 94–102 (2009)CrossRefGoogle Scholar
  26. 26.
    Provancher, W.R., Sylvester, N.D.: Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans. Haptics 2(4), 212–223 (2009)CrossRefGoogle Scholar
  27. 27.
    Tiest, W.M.B., Kappers, A.M.: Tactile perception of thermal diffusivity. Attention Percept. Psychophy. 71(3), 481–489 (2009)CrossRefGoogle Scholar
  28. 28.
    Tiest, W.M.B.: Tactual perception of material properties. Vis. Res. 50(24), 2775–2782 (2010)CrossRefGoogle Scholar
  29. 29.
    McMahan, W., Romano, J.M., Rahuman, A.M.A., Kuchenbecker, K.J.: High frequency acceleration feedback significantly increases the realism of haptically rendered textured surfaces. In: IEEE Haptics Symposium, pp. 141–148 (2010)Google Scholar
  30. 30.
    Bau, O., Poupyrev, I., Israr, A., Harrison, C.: TeslaTouch: electrovibration for touch surfaces. In: UIST, pp. 283–292 (2010)Google Scholar
  31. 31.
    Kim, S.C., Kyung, K.U., Kwon, D.S.: Haptic annotation for an interactive image. In: 5th International Conference on Ubiquitous Information Management and Communication, p. 51 (2011)Google Scholar
  32. 32.
    Mullenbach, J., Johnson, D., Colgate, J.E., Peshkin, M.A.: ActivePaD surface haptic device. In: IEEE Haptics Symposium, pp. 407–414 (2012)Google Scholar
  33. 33.
    Culbertson, H., Romano, J.M., Castillo, P., Mintz, M., Kuchenbecker, K.J.: Refined methods for creating realistic haptic virtual textures from tool-mediated contact acceleration data. In: IEEE Haptics Symposium, pp. 385–391 (2012)Google Scholar
  34. 34.
    Kamuro, S., Takeuchi, Y., Minamizawa, K., Tachi, S.: Haptic editor. In: SIGGRAPH Asia Emerging Technologies, p. 14 (2012)Google Scholar
  35. 35.
    Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6(1), 81–93 (2012)CrossRefGoogle Scholar
  36. 36.
    Moscatelli, A., Bianchi, M., Serio, A., Al Atassi, O., Fani, S., Terekhov, A., Hayward, V., Ernst, M., Bicchi, A.: A change in the fingertip contact area induces an illusory displacement of the finger. In: Auvray, M., Duriez, C. (eds.) EUROHAPTICS 2014. LNCS, vol. 8619, pp. 72–79. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44196-1_10CrossRefGoogle Scholar
  37. 37.
    van Beek, F.E., Heck, D.J., Nijmeijer, H., Tiest, W.M.B., Kappers, A.M.: The effect of damping on the perception of hardness. In: World Haptics Conference, pp. 82–87 (2015)Google Scholar
  38. 38.
    Higashi, K., Okamoto, S., Nagano, H., Yamada, Y.: Effects of mechanical parameters on hardness experienced by damped natural vibration stimulation. In: Systems, Man, and Cybernetics, pp. 1539–1544 (2015)Google Scholar
  39. 39.
    Benko, H., Holz, C., Sinclair, M., Ofek, E.: Normaltouch and texturetouch: high-fidelity 3d haptic shape rendering on handheld virtual reality controllers. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 717–728 (2016)Google Scholar
  40. 40.
    Higashi, K., Okamoto, S., Yamada, Y., Nagano, H., Konyo, M.: Hardness perception by tapping: effect of dynamic stiffness of objects. In: World Haptics Conference, pp. 37–41 (2017)Google Scholar
  41. 41.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technicolor R&IRennesFrance
  2. 2.Univ. Rennes, Inria, CNRS, IRISARennesFrance

Personalised recommendations