Assessing Articulatory Modalities for Intercommunication Using Vibrotactile HMDs

  • Victor Adriel de Jesus Oliveira
  • Luciana Nedel
  • Anderson Maciel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10894)


In computer-mediated tactile intercommunication, users not only have to perceive tactile cues but also have to articulate them to carry a two-way interaction. By pressing buttons or performing specific gestures, interlocutors can exchange tactile signals but are not able to extrapolate the given vocabulary. When more access to hardware parameters is provided instead, interlocutors can have more autonomy. Yet, changes in articulation might produce tactile signals that are not perceptually suitable, hindering mutual understanding during intercommunication. In this paper, we explore the trade-off between freedom of articulation and mutual understanding by comparing three articulatory approaches. Dyads performed a collaborative task using their vibrotactile HMDs to communicate. Their performance during the task, as well as mutual understanding, workload and easiness, were assessed as a function of each articulatory condition. Results show that static and mediating conditions support higher performance and mutual understanding compared to a dynamic articulation.


Haptic articulation Tactile communication Vibrotactile HMD 



The authors thank CAPES and CNPq-Brazil for the financial support to the provision of post-graduate scholarship. The authors also thank the subjects whose participation made this study possible. We also acknowledge FAPERGS (project 17/2551-0001192-9) and CNPq-Brazil (project 311353/2017-7).


  1. 1.
    Ansar, A., Rodrigues, D., Desai, J.P., Daniilidis, K., Kumar, V., Campos, M.F.: Visual and haptic collaborative tele-presence. Comput. Graph. 25(5), 789–798 (2001)CrossRefGoogle Scholar
  2. 2.
    Biocca, F., Harms, C., Gregg, J.: The networked minds measure of social presence: Pilot test of the factor structure and concurrent validity. In: 4th Annual International Workshop on Presence, Philadelphia, PA, pp. 1–9 (2001)Google Scholar
  3. 3.
    Brave, S., Dahley, A.: inTouch: a medium for Haptic interpersonal communication. In: CHI 1997 Extended Abstracts on Human Factors in Computing Systems, pp. 363–364. ACM (1997)Google Scholar
  4. 4.
    Brewster, S., Brown, L.M.: Tactons: structured tactile messages for non-visual information display. In: Proceedings of the Fifth Conference on Australasian User Interface, vol. 28, pp. 15–23. Australian Computer Society, Inc. (2004)Google Scholar
  5. 5.
    Brown, L.M., Williamson, J.: Shake2Talk: multimodal messaging for interpersonal communication. In: Oakley, I., Brewster, S. (eds.) HAID 2007. LNCS, vol. 4813, pp. 44–55. Springer, Heidelberg (2007). Scholar
  6. 6.
    Chan, A., MacLean, K., McGrenere, J.: Designing haptic icons to support collaborative turn-taking. Int. J. Hum.-Comput. Stud. 66(5), 333–355 (2008)CrossRefGoogle Scholar
  7. 7.
    Chang, A., O’Modhrain, S., Jacob, R., Gunther, E., Ishii, H.: ComTouch: design of a vibrotactile communication device. In: Proceedings of the 4th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, DIS 2002, pp. 312–320. ACM, New York (2002)Google Scholar
  8. 8.
    Chebbi, B., Lazaroff, D., Bogsany, F., Liu, P.X., Niy, L., Rossi, M.: Design and implementation of a collaborative virtual Haptic surgical training system. In: 2005 IEEE International Conference on Mechatronics and Automation, vol. 1, pp. 315–320. IEEE (2005)Google Scholar
  9. 9.
    Cholewiak, R., Brill, J., Schwab, A.: Vibrotactile localization on the abdomen: effects of place and space. Percept. Psychophysics 66(6), 970–987 (2004)CrossRefGoogle Scholar
  10. 10.
    Clark, H.H., Brennan, S.E., et al.: Grounding in communication. Perspect. Socially Shared Cogn. 13(1991), 127–149 (1991)CrossRefGoogle Scholar
  11. 11.
    Cramer, H., Kemper, N., Amin, A., Wielinga, B., Evers, V.: give me a hug: the effects of touch and autonomy on people’s responses to embodied social agents. Comput. Anim. Virtual Worlds 20(2–3), 437–445 (2009)CrossRefGoogle Scholar
  12. 12.
    Dragovic, M.: Towards an improved measure of the edinburgh handedness inventory: a one-factor congeneric measurement model using confirmatory factor analysis. Laterality Asymmetries Body Brain Cogn. 9(4), 411–419 (2004)CrossRefGoogle Scholar
  13. 13.
    Field, T.: Touch, 2nd edn. MIT Press, Cambridge (2001)Google Scholar
  14. 14.
    Gallace, A., Spence, C.: The science of interpersonal touch: an overview. Neurosci. Biobehav. Rev. 34(2), 246–259 (2010)CrossRefGoogle Scholar
  15. 15.
    Gugenheimer, J., Dobbelstein, D., Winkler, C., Haas, G., Rukzio, E.: FaceTouch: enabling touch interaction in display fixed UIs for mobile virtual reality. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016, pp. 49–60. ACM, New York (2016)Google Scholar
  16. 16.
    Gugenheimer, J., Stemasov, E., Sareen, H., Rukzio, E.: FaceDisplay: enabling multi-user interaction for mobile virtual reality. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 369–372. ACM (2017)Google Scholar
  17. 17.
    Haans, A., IJsselsteijn, W.: Mediated social touch: a review of current research and future directions. Virtual Reality 9(2–3), 149–159 (2006)CrossRefGoogle Scholar
  18. 18.
    Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908. Sage Publications (2006)CrossRefGoogle Scholar
  19. 19.
    Hashimoto, T., Ishibashi, Y.: Group synchronization control over Haptic media in a networked real-time game with collaborative work. In: Proceedings of 5th ACM SIGCOMM Workshop on Network and System Support for Games, p. 8. ACM (2006)Google Scholar
  20. 20.
    Iglesias, R., Prada, E., Uribe, A., Garcia-Alonso, A., Casado, S., Gutierrez, T.: Assembly simulation on collaborative haptic virtual environments (2007)Google Scholar
  21. 21.
    Israr, A., Zhao, S., Schneider, O.: Exploring embedded Haptics for social networking and interactions. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1899–1904. ACM (2015)Google Scholar
  22. 22.
    de Jesus Oliveira, V.A., Brayda, L., Nedel, L., Maciel, A.: Designing a vibrotactile head-mounted display for spatial awareness in 3D spaces. IEEE Trans. Vis. Comput. Graph. 23(4), 1409–1417 (2017)CrossRefGoogle Scholar
  23. 23.
    de Jesus Oliveira, V.A., Nedel, L., Maciel, A.: Proactive Haptic articulation for intercommunication in collaborative virtual environments. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 91–94. IEEE (2016)Google Scholar
  24. 24.
    de Jesus Oliveira, V.A., Nedel, L., Maciel, A., Brayda, L.: Localized magnification in vibrotactile HMDs for accurate spatial awareness. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9775, pp. 55–64. Springer, Cham (2016). Scholar
  25. 25.
    Kaul, O.B., Rohs, M.: HapticHead: 3D guidance and target acquisition through a vibrotactile grid. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 2533–2539. ACM (2016)Google Scholar
  26. 26.
    Kerdegari, H., Kim, Y., Prescott, T.J.: Head-mounted sensory augmentation device: designing a tactile language. IEEE Trans. Haptics 9(3), 376–386 (2016)CrossRefGoogle Scholar
  27. 27.
    Núñez, O.J.A., Lange, M., Steinicke, F., Bruder, G.: Vibrotactile assistance for user guidance towards selection targets in VR and the cognitive resources involved. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 95–98, March 2017Google Scholar
  28. 28.
    Oakley, I., Brewster, S., Gray, P.: Can you feel the force? an investigation of Haptic collaboration in shared editors. In: proceedings of EuroHaptics, pp. 54–59 (2001)Google Scholar
  29. 29.
    Rash, C.E., Russo, M.B., Letowski, T.R., Schmeisser, E.T.: Helmet-mounted displays: sensation, perception and cognition issues. Technical report, DTIC Document (2009)Google Scholar
  30. 30.
    Sallnäs, E.L., Rassmus-Gröhn, K., Sjöström, C.: Supporting presence in collaborative environments by haptic force feedback. ACM Trans. Comput.-Hum. Interact. (TOCHI) 7(4), 461–476 (2000)CrossRefGoogle Scholar
  31. 31.
    Sauro, J., Dumas, J.S.: Comparison of three one-question, post-task usability questionnaires. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2009)Google Scholar
  32. 32.
    Serrano, M., Ens, B.M., Irani, P.P.: Exploring the use of hand-to-face input for interacting with head-worn displays. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3181–3190. ACM (2014)Google Scholar
  33. 33.
    Smith, J., MacLean, K.: Communicating emotion through a haptic link: design space and methodology. Int. J. Hum.-Comput. Stud. 65(4), 376–387 (2007)CrossRefGoogle Scholar
  34. 34.
    Ternes, D., MacLean, K.E.: Designing large sets of Haptic icons with rhythm. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 199–208. Springer, Heidelberg (2008). Scholar
  35. 35.
    Van Erp, J.B., Toet, A.: Social touch in human-computer interaction. Front. Dig. Humanit. 2, 2 (2015)Google Scholar
  36. 36.
    Wobbrock, J.O., Myers, B.A., Aung, H.H.: The performance of hand postures in front-and back-of-device interaction for mobile computing. Int. J. Hum.-Comput. Stud. 66(12), 857–875 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INF, Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations