Advertisement

Anti-Veering Vibrotactile HMD for Assistance of Blind Pedestrians

  • Victor Adriel de Jesus Oliveira
  • Luciana Nedel
  • Anderson Maciel
  • Luca Brayda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10894)

Abstract

Veering is a common experience for blind pedestrians and for individuals walking in unfamiliar spaces. In this paper, we assess a vibrotactile Head-Mounted Display to assist blind individuals to walk straight from a point to another. Our goal was to assess such device for both assistance and self-Orientation and Mobility (O&M) training to provide more autonomy to blind pedestrians. Blind and blindfolded subjects performed a series of assisted and non-assisted sessions to verify how deviation errors are modulated according to the use of the device. Moreover, the vibrotactile feedback was compared to audible walking signals commonly present in many road-cross scenarios, as well as in traditional O&M sessions. Performance and subjective measures were assessed as a function of stimulus modality and group profile. Results show that the vibrotactile feedback significantly reduces the veering for both sighted and blind subjects.

Keywords

Tactile guidance Anti-veering Vibrotactile display 

Notes

Acknowledgments

The authors thank the rehabilitation operators of the Istituto David Chiossone, Claudia Vigini and Serena Portacci. Thanks to Elena Cocchi and Elisabetta Capris for the support and the recruitment of our sample. Special thanks to the subjects who made this study possible. This study is partly supported by the Ligurian PAR-FAS grant Glassense (CUP G35C13001360001) and EU FP7 grant BLINDPAD (grant number 611621). We also acknowledge FAPERGS (17/2551-0001192-9) and CNPq-Brazil (311353/2017-7).

References

  1. 1.
    Cardin, S., Thalmann, D., Vexo, F.: A wearable system for mobility improvement of visually impaired people. Vis. Comput. 23(2), 109–118 (2006)CrossRefGoogle Scholar
  2. 2.
    Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Trans. Syst. Man. Cybern. Part C (Appl. Rev.) 40(1), 25–35 (2010)CrossRefGoogle Scholar
  3. 3.
    Dobrzynski, M.K., Mejri, S., Wischmann, S., Floreano, D.: Quantifying information transfer through a head-attached vibrotactile display: principles for design and control. IEEE Trans. Biomed. Eng. 59(7), 2011–2018 (2012)CrossRefGoogle Scholar
  4. 4.
    Dragovic, M.: Towards an improved measure of the edinburgh handedness inventory: a one-factor congeneric measurement model using confirmatory factor analysis. Laterality Asymmetries Body Brain Cogn. 9(4), 411–419 (2004)CrossRefGoogle Scholar
  5. 5.
    Federal Highway Administration, U.S. Department of Transportation: Manual on uniform traffic control devices (MUTCD) (2017). http://mutcd.fhwa.dot.gov/. Accessed 17 Jan 2017
  6. 6.
    Fiannaca, A., Apostolopoulous, I., Folmer, E.: Headlock: a wearable navigation aid that helps blind cane users traverse large open spaces. In: Proceedings of the 16th International ACM SIGACCESS Conference on Computers & Accessibility, ASSETS 2014, pp. 323–324. ACM, New York (2014)Google Scholar
  7. 7.
    Flores, G., Kurniawan, S., Manduchi, R., Martinson, E., Morales, L.M., Sisbot, E.A.: Vibrotactile guidance for wayfinding of blind walkers. IEEE Trans. Haptics 8(3), 306–317 (2015)CrossRefGoogle Scholar
  8. 8.
    Guth, D.: Why does training reduce blind pedestrians veering. In: Blindness and Brain Plasticity in Navigation and Object Perception, pp. 353–365. Taylor & Francis (2008)Google Scholar
  9. 9.
    Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908 (2006)CrossRefGoogle Scholar
  10. 10.
    de Jesus Oliveira, V.A., Nedel, L., Maciel, A., Brayda, L.: Localized magnification in vibrotactile HMDs for accurate spatial awareness. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9775, pp. 55–64. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42324-1_6CrossRefGoogle Scholar
  11. 11.
    de Jesus Oliveira, V.A., Nedel, L., Maciel, A., Brayda, L.: Spatial discrimination of vibrotactile stimuli around the head. In: 2016 IEEE Haptics Symposium (HAPTICS), pp. 1–6. IEEE (2016)Google Scholar
  12. 12.
    Kallie, C.S., Schrater, P.R., Legge, G.E.: Variability in stepping direction explains the veering behavior of blind walkers. J. Exp. Psychol. Hum. Percept. Perform. 33(1), 183 (2007)CrossRefGoogle Scholar
  13. 13.
    Kaul, O.B., Rohs, M.: Haptichead: 3D guidance and target acquisition through a vibrotactile grid. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2016, pp. 2533–2539. ACM, New York(2016)Google Scholar
  14. 14.
    Kempen, G.I., Ballemans, J., Ranchor, A.V., van Rens, G.H., Zijlstra, G.R.: The impact of low vision on activities of daily living, symptoms of depression, feelings of anxiety and social support in community-living older adults seeking vision rehabilitation services. Qual. Life Res. 21(8), 1405–1411 (2012)CrossRefGoogle Scholar
  15. 15.
    Kerdegari, H., Kim, Y., Prescott, T.J.: Head-mounted sensory augmentation device: comparing haptic and audio modality. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 107–118. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42417-0_11CrossRefGoogle Scholar
  16. 16.
    Kerdegari, H., Kim, Y., Stafford, T., Prescott, T.J.: Centralizing bias and the vibrotactile funneling illusion on the forehead. In: Auvray, M., Duriez, C. (eds.) EUROHAPTICS 2014. LNCS, vol. 8619, pp. 55–62. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44196-1_8CrossRefGoogle Scholar
  17. 17.
    Loomis, J.M., Golledge, R.G., Klatzky, R.L., Marston, J.R.: Assisting wayfinding in visually impaired travelers. In: Applied Spatial Cognition: From Research to Cognitive Technology. Lawrence Erlbaum Associates Mahwah, NJ (2007)Google Scholar
  18. 18.
    MacLean, K.E., Hayward, V.: Do it yourself haptics: Part II. IEEE Rob. Autom. Mag. 15(1), 104–119 (2008)CrossRefGoogle Scholar
  19. 19.
    Marston, J.R., Loomis, J.M., Klatzky, R.L., Golledge, R.G.: Nonvisual route following with guidance from a simple haptic or auditory display. J. Vis. Impairment Blindness 101(4), 203 (2007)Google Scholar
  20. 20.
    Marteau, T.M., Bekker, H.: The development of a six-item short-form of the state scale of the spielberger state-trait anxiety inventory (STAI). Br. J. Clin. Psychol. 31(3), 301–306 (1992)CrossRefGoogle Scholar
  21. 21.
    Millar, S.: Veering re-visited: noise and posture cues in walking without sight. Perception 28(6), 765–780 (1999)CrossRefGoogle Scholar
  22. 22.
    Nagy, H., Wersényi, G.: Comparative evaluation of sighted and visually impaired subjects using a mobile application for reducing veering during blindfolded walking. Acta Technica Jaurinensis 9(2), 140–157 (2016)CrossRefGoogle Scholar
  23. 23.
    Panëels, S.A., Varenne, D., Blum, J.R., Cooperstock, J.R.: The walking straight mobile application: Helping the visually impaired avoid veering. In: ICAD 2013: Proceedings of the International Conference on Autoditory Display, ICAD 2013, pp. 25–32. Lodz University of Technology Press (2013)Google Scholar
  24. 24.
    Rantala, J., Kangas, J., Raisamo, R.: Directional cueing of gaze with a vibrotactile headband. In: Proceedings of the 8th Augmented Human International Conference, AH 2017, pp. 7:1–7:7. ACM, New York (2017)Google Scholar
  25. 25.
    Rash, C.E., Russo, M.B., Letowski, T.R., Schmeisser, E.T.: Helmet-mounted displays: sensation, perception and cognition issues. Technical report, DTIC Document (2009)Google Scholar
  26. 26.
    Ross, D.A., Blasch, B.B.: Wearable interfaces for orientation and wayfinding. In: Proceedings of the Fourth International ACM Conference on Assistive Technologies, Assets 2000, pp. 193–200, ACM, New York (2000)Google Scholar
  27. 27.
    Sauro, J., Dumas, J.S.: Comparison of three one-question, post-task usability questionnaires. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 1599–1608. ACM, New York (2009)Google Scholar
  28. 28.
    Shangguan, L., Yang, Z., Zhou, Z., Zheng, X., Wu, C., Liu, Y.: CrossNavi: enabling real-time crossroad navigation for the blind with commodity phones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2014, pp. 787–798. ACM, New York (2014)Google Scholar
  29. 29.
    Uematsu, A., Inoue, K., Hobara, H., Kobayashi, H., Iwamoto, Y., Hortobágyi, T., Suzuki, S.: Preferred step frequency minimizes veering during natural human walking. Neurosci. Lett. 505(3), 291–293 (2011)CrossRefGoogle Scholar
  30. 30.
    Wall, R.S., Ashmead, D.H., Bentzen, B.L., Barlow, J.: Directional guidance from audible pedestrian signals for street crossing. Ergonomics 47(12), 1318–1338 (2004)CrossRefGoogle Scholar
  31. 31.
    Zeng, L., Weber, G.: Building augmented you-are-here maps through collaborative annotations for the visually impaired. In: Proceedings SKALID, p. 7 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INFUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.RBCSFondazione Istituto Italiano di Tecnologia (IIT)GenoaItaly

Personalised recommendations