Advertisement

Haptic Rendering of Solid Object Submerged in Flowing Fluid with Environment Dependent Texture

  • Avirup MandalEmail author
  • Dwaipayan Sardar
  • Subhasis Chaudhuri
Conference paper
  • 2.3k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10894)

Abstract

Haptic rendering of complex scenes where interacting materials coexist at different states is a challenging task. In our work, we propose an equal sized, Smoothed Particle Hydrodynamics (SPH) based novel technique to render stable, real-time and realistic haptic force feedback of a dynamic solid-fluid hybrid environment. Along with force feedback, a space varying solid object texture is also rendered using a depth map differencing approach and further improved by mapping custom material friction on the object surface. The setup has been implemented on a single, mid-end GPU achieving a frame rate of 300 frames/second for 65000 particles. The quantitative and qualitative evaluations are done using feedback forces and user study, respectively and compared with state of the art.

Keywords

Haptic rendering Unified particle model Position based dynamics Object texture Buoyancy 

Supplementary material

Supplementary material 1 (mp4 5703 KB)

References

  1. 1.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30 (1992)CrossRefGoogle Scholar
  2. 2.
    Bridson, R., Müller-Fischer, M.: Fluid simulation. In: ACM SIGGRAPH Courses (2007)Google Scholar
  3. 3.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of ACM SIGGRAPH (2003)Google Scholar
  4. 4.
    Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Animat. Virt. Worlds. 18 (2007)CrossRefGoogle Scholar
  5. 5.
    Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32 (2013)CrossRefGoogle Scholar
  6. 6.
    Williams, B.W.: Fluid surface reconstruction from particles. Master’s thesis, The University Of British Columbia (2008)Google Scholar
  7. 7.
    Jihun, Y., Greg, T.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. 32 (2013)Google Scholar
  8. 8.
    van der Laan, W.J., Green, S., Sainz, M.: Screen space fluid rendering with curvature flow. In: Proceedings of Symposium on Interactive 3D Graphics and Games (2013)Google Scholar
  9. 9.
    Dobashi, Y., Sato, M., Hasegawa, S., Yamamoto, T., Kato, M., Nishita, T.: A fluid resistance map method for real-time haptic interaction with fluids. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology (2006)Google Scholar
  10. 10.
    Cirio, G., Marchal, M., Hillaire, S., Lecuyer, A.: Six degrees-of-freedom haptic interaction with fluids. IEEE Trans. Vis. and Comp. Graph. 17 (2011)CrossRefGoogle Scholar
  11. 11.
    Cirio, G., Marchal M., Otaduy, M.A., LÃl’cuyer, A.: Six-oof haptic interaction with fluids, solids, and their transitions. In: Proceedings of World Haptics (2013)Google Scholar
  12. 12.
    Adami, S., Hu, X.Y., Adams, N.A.: A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231, 7057–7075 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sreeni, K.G., Priyadarshini, K., Praseedha, A.K., Chaudhuri, S.: Haptic rendering of cultural heritage objects at different scales. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 505–516. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31401-8_45CrossRefGoogle Scholar
  14. 14.
    Feng, G., Liu, S.: Haptic interaction based SPH fluid control. In: Proceedings of CASA (2017)Google Scholar
  15. 15.
    Liang, J., Yu, G., Wang, K., Wang, Y., Guo, L.: Realtime haptic rendering in hybrid environment using unified SPH method. In: Proceedings of Soft Computing & Machine Intelligence (2016)Google Scholar
  16. 16.
    Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proceedings of ACM SIGGRAPH (2005)Google Scholar
  17. 17.
    Mora, J., Lee, W.: Real-time fluid interaction with a haptic device. In: Proceedings of HAVE (2017)Google Scholar
  18. 18.
    Zhang, X., Liu, S.: SPH haptic interaction with multiple-fluid simulation. In: Proceedings of VR (2017)CrossRefGoogle Scholar
  19. 19.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Avirup Mandal
    • 1
    Email author
  • Dwaipayan Sardar
    • 1
  • Subhasis Chaudhuri
    • 1
  1. 1.Vision and Image Processing Lab, Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations