Efficient Unconditionally Secure Signatures Using Universal Hashing

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10892)


Digital signatures are one of the most important cryptographic primitives. In this work we construct an information-theoretically secure signature scheme which, unlike prior schemes, enjoys a number of advantageous properties such as short signature length and high generation efficiency, to name two. In particular, we extend symmetric-key message authentication codes (MACs) based on universal hashing to make them transferable, a property absent from traditional MAC schemes. Our main results are summarised as follows.

  • We construct an unconditionally secure signature scheme which, unlike prior schemes, does not rely on a trusted third party or anonymous channels.

  • We prove information-theoretic security of our scheme against forging, repudiation, and non-transferability.

  • We compare our scheme with existing both “classical” (not employing quantum mechanics) and quantum unconditionally secure signature schemes. The comparison shows that our new scheme, despite requiring fewer resources, is much more efficient than all previous schemes.

  • Finally, although our scheme does not rely on trusted third parties, we discuss this, showing that having a trusted third party makes our scheme even more attractive.


Digital signatures Information-theoretic security Transferable MAC Universal hashing 


  1. 1.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
  2. 2.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). Scholar
  3. 3.
    Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)CrossRefGoogle Scholar
  4. 4.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S., (ed.) Proceedings 35th Annual Symposium on Foundations of Computer Science. SFCS 1994, vol. 35, pp. 124–134. IEEE Computer Society (1994)Google Scholar
  5. 5.
    National Security Agency: Cryptography Today, August 2015.
  6. 6.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory (1978)Google Scholar
  7. 7.
    Micciancio, D.: Lattice-based cryptography. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security. Springer, Boston (2011). Scholar
  8. 8.
    Song, F.: A note on quantum security for post-quantum cryptography. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer, Cham (2014). Scholar
  9. 9.
    Biasse, J.F., Song, F.: On the quantum attacks against schemes relying on the hardness of finding a short generator of an ideal in \({Q} (\zeta \)pn) (2015)Google Scholar
  10. 10.
    Amiri, R., Andersson, E.: Unconditionally secure quantum signatures. Entropy 17(8), 5635–5659 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)CrossRefGoogle Scholar
  12. 12.
    Chaum, D., Roijakkers, S.: Unconditionally-secure digital signatures. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 206–214. Springer, Heidelberg (1991). Scholar
  13. 13.
    Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and byzantine agreement for \(t \ge n/3\). IBM (1996)Google Scholar
  14. 14.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signature schemes admitting transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000). Scholar
  16. 16.
    Hanaoka, G., Shikata, J., Zheng, Y.: Efficient unconditionally secure digital signatures. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(1), 120–130 (2004)Google Scholar
  17. 17.
    Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security notions for unconditionally secure signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 434–449. Springer, Heidelberg (2002). Scholar
  18. 18.
    Swanson, C.M., Stinson, D.R.: Unconditionally secure signature schemes revisited. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 100–116. Springer, Heidelberg (2011). Scholar
  19. 19.
    Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint quant-ph/0105032 (2001)
  20. 20.
    Lu, X., Feng, D.: Quantum digital signature based on quantum one-way functions. In: ICACT 2005, vol. 1, pp. 514–517. IEEE (2005)Google Scholar
  21. 21.
    Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2012)CrossRefGoogle Scholar
  22. 22.
    Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)CrossRefGoogle Scholar
  23. 23.
    Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016). Scholar
  24. 24.
    Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)CrossRefGoogle Scholar
  25. 25.
    Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)CrossRefGoogle Scholar
  26. 26.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)CrossRefGoogle Scholar
  27. 27.
    Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature schemes. Quantum Inf. Comput. 16, 435–464 (2016)MathSciNetGoogle Scholar
  28. 28.
    Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18, 143–154 (1979)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On families of hash functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994). Scholar
  30. 30.
    Abidin, A., Larsson, J.Å.: New universal hash functions. In: Armknecht, F., Lucks, S. (eds.) WEWoRC 2011. LNCS, vol. 7242, pp. 99–108. Springer, Heidelberg (2012). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SUPA, Institute of Photonics and Quantum SciencesHeriot-Watt UniversityEdinburghUK
  2. 2.imec-COSICKU LeuvenLeuvenBelgium
  3. 3.LFCS, School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations