Efficient Unconditionally Secure Signatures Using Universal Hashing
Abstract
Digital signatures are one of the most important cryptographic primitives. In this work we construct an informationtheoretically secure signature scheme which, unlike prior schemes, enjoys a number of advantageous properties such as short signature length and high generation efficiency, to name two. In particular, we extend symmetrickey message authentication codes (MACs) based on universal hashing to make them transferable, a property absent from traditional MAC schemes. Our main results are summarised as follows.

We construct an unconditionally secure signature scheme which, unlike prior schemes, does not rely on a trusted third party or anonymous channels.

We prove informationtheoretic security of our scheme against forging, repudiation, and nontransferability.

We compare our scheme with existing both “classical” (not employing quantum mechanics) and quantum unconditionally secure signature schemes. The comparison shows that our new scheme, despite requiring fewer resources, is much more efficient than all previous schemes.

Finally, although our scheme does not rely on trusted third parties, we discuss this, showing that having a trusted third party makes our scheme even more attractive.
Keywords
Digital signatures Informationtheoretic security Transferable MAC Universal hashingReferences
 1.Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and publickey cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
 2.ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3540395687_2CrossRefGoogle Scholar
 3.Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)CrossRefGoogle Scholar
 4.Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S., (ed.) Proceedings 35th Annual Symposium on Foundations of Computer Science. SFCS 1994, vol. 35, pp. 124–134. IEEE Computer Society (1994)Google Scholar
 5.National Security Agency: Cryptography Today, August 2015. https://www.nsa.gov/ia/programs/suiteb_cryptography/
 6.McEliece, R.J.: A publickey cryptosystem based on algebraic coding theory (1978)Google Scholar
 7.Micciancio, D.: Latticebased cryptography. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security. Springer, Boston (2011). https://doi.org/10.1007/9781441959065_417CrossRefzbMATHGoogle Scholar
 8.Song, F.: A note on quantum security for postquantum cryptography. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer, Cham (2014). https://doi.org/10.1007/9783319116594_15CrossRefzbMATHGoogle Scholar
 9.Biasse, J.F., Song, F.: On the quantum attacks against schemes relying on the hardness of finding a short generator of an ideal in \({Q} (\zeta \)pn) (2015)Google Scholar
 10.Amiri, R., Andersson, E.: Unconditionally secure quantum signatures. Entropy 17(8), 5635–5659 (2015)MathSciNetCrossRefGoogle Scholar
 11.Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantumkeydistribution components. Phys. Rev. A 91(4), 042304 (2015)CrossRefGoogle Scholar
 12.Chaum, D., Roijakkers, S.: Unconditionallysecure digital signatures. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 206–214. Springer, Heidelberg (1991). https://doi.org/10.1007/3540384243_15CrossRefGoogle Scholar
 13.Pfitzmann, B., Waidner, M.: Informationtheoretic pseudosignatures and byzantine agreement for \(t \ge n/3\). IBM (1996)Google Scholar
 14.Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
 15.Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signature schemes admitting transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000). https://doi.org/10.1007/3540444483_11CrossRefGoogle Scholar
 16.Hanaoka, G., Shikata, J., Zheng, Y.: Efficient unconditionally secure digital signatures. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(1), 120–130 (2004)Google Scholar
 17.Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security notions for unconditionally secure signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 434–449. Springer, Heidelberg (2002). https://doi.org/10.1007/3540460357_29CrossRefGoogle Scholar
 18.Swanson, C.M., Stinson, D.R.: Unconditionally secure signature schemes revisited. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 100–116. Springer, Heidelberg (2011). https://doi.org/10.1007/9783642207280_10CrossRefGoogle Scholar
 19.Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint quantph/0105032 (2001)
 20.Lu, X., Feng, D.: Quantum digital signature based on quantum oneway functions. In: ICACT 2005, vol. 1, pp. 514–517. IEEE (2005)Google Scholar
 21.Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phaseencoded coherent states of light. Nat. Commun. 3, 1174 (2012)CrossRefGoogle Scholar
 22.Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)CrossRefGoogle Scholar
 23.Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016). https://doi.org/10.1103/PhysRevA.93.032325CrossRefGoogle Scholar
 24.Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)CrossRefGoogle Scholar
 25.Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometerrange quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)CrossRefGoogle Scholar
 26.Scarani, V., BechmannPasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)CrossRefGoogle Scholar
 27.Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature schemes. Quantum Inf. Comput. 16, 435–464 (2016)MathSciNetGoogle Scholar
 28.Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18, 143–154 (1979)MathSciNetCrossRefGoogle Scholar
 29.Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On families of hash functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994). https://doi.org/10.1007/3540483292_28CrossRefGoogle Scholar
 30.Abidin, A., Larsson, J.Å.: New universal hash functions. In: Armknecht, F., Lucks, S. (eds.) WEWoRC 2011. LNCS, vol. 7242, pp. 99–108. Springer, Heidelberg (2012). https://doi.org/10.1007/9783642341595_7CrossRefGoogle Scholar