Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments



Pearl millet [Pennisetum glaucum (L.) R. Br.; Syn. Cenchrus americanus (L.) Morrone] is the sixth most important cereal in the world. Today, pearl millet is grown on more than 30 million ha mainly in West and Central Africa and the Indian sub-continent as a staple food for more than 90 million people in agriculturally marginal areas. It is rich in proteins and minerals and has numerous health benefits such as being gluten-free and having slow-digesting starch. It is grown as a forage crop in temperate areas. It is drought and heat tolerant, and a climate-smart crop that can withstand unpredictable variability in climate. However, research on pearl millet improvement is lagging behind other major cereals mainly due to limited investment in terms of man and money power. So far breeding achievements include the development of cytoplasmic male sterility (CMS), maintenance counterparts (rf) system and nuclear fertility restoration genes (Rf) for hybrid breeding, dwarfing genes for reduced height, improved input responsiveness, photoperiod neutrality for short growing season, and resistance to important diseases. Further improvement of pearl millet for genetic yield potential, stress tolerance, and nutritional quality traits would enhance food and nutrition security for people living in agriculturally dissolute environments. Application of molecular technology in the pearl millet breeding program has a promise in enhancing the selection efficiency while shortening the lengthy phenotypic selection process ultimately improving the rate of genetic gains. Linkage analysis and genome-wide association studies based on different marker systems in detecting quantitative trait loci (QTLs) for important agronomic traits are well demonstrated. Genetic resources including wild relatives have been categorized into primary, secondary and tertiary gene pools based on the level of genetic barriers and ease of gene introgression into pearl millet. A draft on pearl millet whole genome sequence was recently published with an estimated 38,579 genes annotated to establish genomic-assisted breeding. Resequencing a large number of germplasm lines and several population genomic studies provided a valuable insight into population structure, genetic diversity and domestication history of the crop. Successful improvement in combination with modern genomic/genetic resources, tools and technologies and adoption of pearl millet will not only improve the resilience of global food system through on-farm diversification but also dietary intake which depends on diminishingly fewer crops.


Biofortification Climate resilient Cytoplasmic male sterility Dwarfing gene Gene pool Genomic-assisted breeding Pennisetum glaucum 



Funding for the senior author was provided by the United States Agency for International Development under Cooperative Agreement No. AID-OAA-A-13-00047 with the Kansas State University Sorghum and Millet Innovation Lab (SMIL). The contents are solely the responsibility of the authors and do not necessarily reflect the views of USAID or others. This is contribution number 19-043-B from the Kansas Agricultural Experiment Station.


  1. Alagarswamy G, Bidinger FR (1987) Genotypic variation in biomass production and nitrogen use efficiency in pearl millet [Pennisetum americanum (L.) Leeke]. In: Gabelman WH, Loughman BC (eds) Genetic aspects of plant mineral nutrition: proceedings of the second international symposium on genetic aspects of plant mineral nutrition, University of Wisconsin, Madison, June 16–20, 1985. Springer Netherlands, Dordrecht, pp 281–286Google Scholar
  2. Ali GM, Murtaza N, Collins JC, McNeilly T (2006) Study of salt tolerance parameters in pearl millet Pennisetum americanum. J Cent Eur Agri 7:365–376Google Scholar
  3. Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205CrossRefGoogle Scholar
  4. Amadou I, Gounga ME, Le GW (2013) Millets: nutritional composition, some health benefits and processing—a review. Emir J Food Agri 25:501–508. Scholar
  5. Ambawat S, Senthilvel S, Hash CT, Nepolean T, Rajaram V, Eshwar K, Sharma R, Thakur RP, Rao VP, Yadav RC, Srivastava RK (2016) QTL mapping of pearl millet rust resistance using an integrated DArT- and SSR-based linkage map. Euphytica 209:461–476CrossRefGoogle Scholar
  6. Andrew RL, Wallis IR, Harwood CE, Foley WJ (2010) Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa. Ann Bot 105:707–717CrossRefPubMedPubMedCentralGoogle Scholar
  7. Andrews D, Kumar KA (1996) Use of the west African pearl millet iniadi in cultivar development. Plant Genet Resour Newsl 105:15–22Google Scholar
  8. Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP, Meena MC, Singhal T, Srivastava RK (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci 8:412CrossRefPubMedPubMedCentralGoogle Scholar
  9. Appa Rao S, Mengesha MH, Reddy CR (1986) New sources of dwarfing genes in pearl millet (Pennisetum americanum). Theor Appl Genet 73:170–174CrossRefPubMedPubMedCentralGoogle Scholar
  10. Azhaguvel P, Hash CT, Rangasamy P, Sharma A (2003) Mapping the d1 and d2 dwarfing genes and the purple foliage color locus P in pearl millet. J Hered 94:155–159CrossRefGoogle Scholar
  11. Bailey AV, Piccolo B, Sumrell G, Burton GW (1979) Amino acid profiles, chemical scores, and mineral contents of some pearl millet inbred lines. J Agri Food Chem 27:1421–1423CrossRefGoogle Scholar
  12. Bashir EMA, Ali AM, Ali AM, Mohamed ETI, Melchinger AE, Parzies HK, Haussmann BIG (2015) Genetic diversity of Sudanese pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as revealed by SSR markers, and relationship between genetic and agro-morphological diversity. Genet Resour Crop Evol 62:579–591CrossRefGoogle Scholar
  13. Bationo A, Christianson CB, Klaij MC (1993) The effect of crop residue and fertilizer use on pearl millet yields in Niger. Fertil Res 34:251–258CrossRefGoogle Scholar
  14. Bennett PM (2004) Genome plasticity. In: Woodford N, Johnson AP (eds) Genomics, proteomics, and clinical bacteriology: methods and reviews. Humana Press, Totowa, NJ, pp 71–113CrossRefGoogle Scholar
  15. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye C-Y, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561Google Scholar
  16. Berg A, de Noblet-Ducoudré N, Sultan B, Lengaigne M, Guimberteau M (2013) Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agri For Meteorol 170:89–102CrossRefGoogle Scholar
  17. Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet-a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bhattacharjee R, Bramel P, Hash C, Kolesnikova-Allen M, Khairwal I (2002) Assessment of genetic diversity within and between pearl millet landraces. Theor Appl Genet 105:666–673CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bhattacharjee R, Khairwal IS, Bramel P, Reddy KN (2007) Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155:35–45CrossRefGoogle Scholar
  20. Bidinger FR, Raju DS (1990) Effects of the d2 dwarfing gene in pearl millet. Theor Appl Genet 79:521–524CrossRefPubMedGoogle Scholar
  21. Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop Sci 47:969–980CrossRefGoogle Scholar
  22. Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:1–18CrossRefGoogle Scholar
  23. Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agri Res 56:1159–1168CrossRefGoogle Scholar
  24. Bono M (1973) Contribution à la morpho-systématique des Pennisetum annuels cultivés pour leur grain en Afrique Occidentale francophone. L’Agronomie Trop Série 3. Agron Générale Etudes Sci 28:229–356Google Scholar
  25. Brunken JN (1977) A systematic study of Pennisetum sect. Pennisetum (Gramineae). Am J Bot 64:161–176CrossRefGoogle Scholar
  26. Brunken J, de Wet JMJ, Harlan JR (1977) The morphology and domestication of pearl millet. Econ Bot 31:163–174CrossRefGoogle Scholar
  27. Buerkert A, Moser M, Kumar AK, Fürst P, Becker K (2001) Variation in grain quality of pearl millet from Sahelian West Africa. Field Crops Res 69:1–11CrossRefGoogle Scholar
  28. Burgarella C, Cubry P, Kane NA, Varshney RK, Mariac C, Liu X, Shi C, Thudi M, Couderc M, Xu X, Chitikineni A, Scarcelli N, Barnaud A, Rhoné B, Dupuy C, François O, Berthouly-Salazar C, Vigouroux Y (2018) A western Sahara centre of domestication inferred from pearl millet genomes. Nat Ecol Evol 2:1377–1380CrossRefGoogle Scholar
  29. Burton GW (1951) Quantitative inheritance in pearl millet (Pennisetum glaucum). Agron J 43:409–417CrossRefGoogle Scholar
  30. Burton GW (1965) Photoperiodism in pearl millet, Pennisetum typhoides. Crop Sci 5:333–335CrossRefGoogle Scholar
  31. Burton GW, Fortson JC (1966) Inheritance and utilization of five dwarfs in pearl millet (Pennisetum typhoides) breeding. Crop Sci 6:69–72CrossRefGoogle Scholar
  32. Burton GW, Powell JB (1968) Pearl millet breeding and cytogenetics. Adv Agron 20:49–89CrossRefGoogle Scholar
  33. Burton GW, Monson WG, Johnson JC, Lowrey RS, Chapman HD, Marchant WH (1969) Effect of the d2 dwarf gene on the forage yield and quality of pearl millet 1. Agron J 61:607–612CrossRefGoogle Scholar
  34. Butler EJ (1907) Some diseases of cereals caused by Sclerospora graminicola. Memiors of the Department of Agriculture in India. Bot Ser 2:1–24Google Scholar
  35. Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183CrossRefPubMedPubMedCentralGoogle Scholar
  36. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14Google Scholar
  37. Cherney JH, Axtell JD, Hassen MM, Anliker KS (1988) Forage quality characterization of a chemically induced brown-midrib mutant in pearl millet. Crop Sci 28:783–787CrossRefGoogle Scholar
  38. Cherney DJ, Patterson JA, Johnson KD (1990) Digestibility and feeding value of pearl millet as influenced by the brown-midrib, low-lignin trait. J Anim Sci 68:4345–4351CrossRefGoogle Scholar
  39. Clotault J, Thuillet AC, Buiron M, De Mita S, Couderc M, Haussmann BIGG, Mariac C, Vigouroux Y (2012) Evolutionary history of pearl millet [Pennisetum glaucum (L.) R. Br.] and selection on flowering genes since its domestication. Mol Biol Evol 29:1199–1212CrossRefGoogle Scholar
  40. Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442CrossRefPubMedPubMedCentralGoogle Scholar
  41. Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975Google Scholar
  42. D’Andrea AC, Casey J (2002) Pearl millet and Kintampo subsistence. Afr Arch Rev 19:147–173CrossRefGoogle Scholar
  43. Danjuma MN, Mohammed S (2014) Genetic diversity of pearl millet (Pennisetum typhoides) cultivars in semi-arid northern Nigeria. J Nat Sci Res 4:34–42Google Scholar
  44. Dave HR (1987) Pearl millet hybrids. In: Witcombe JR, Beckerman SR (eds) Proceedings of the international pearl millet workshop. ICRISAT, Patancheru, AP 502324, India, pp 121–126Google Scholar
  45. Delêtre M, McKey DB, Hodkinson TR (2011) Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. Proc Natl Acad Sci USA 108:18249–18254CrossRefGoogle Scholar
  46. Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190–198CrossRefGoogle Scholar
  47. Dingkuhn M, Singh BB, Clerget B, Chantereau J, Sultan B (2006) Past, present and future criteria to breed crops for water-limited environments in West Africa. Agri Water Manage 80:241–261CrossRefGoogle Scholar
  48. Djanaguiraman M, Perumal R, Ciampitti IA, Gupta SK, Prasad PVV (2017) Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant, Cell Environ 41:993–1007CrossRefGoogle Scholar
  49. dos Reis GB, Mesquita AT, Torres GA, Andrade-Vieira LF, Vander Pereira A, Davide LC (2014) Genomic homeology between Pennisetum purpureum and Pennisetum glaucum (Poaceae). Comp Cytogenet 8:199–209CrossRefPubMedPubMedCentralGoogle Scholar
  50. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866CrossRefPubMedPubMedCentralGoogle Scholar
  51. Dujardin M, Hanna WW (1989) Crossability of pearl millet with wild Pennisetum species. Crop Sci 29:77–80CrossRefGoogle Scholar
  52. Emendack Y, Herzog H, Götz K-P, Malinowski D (2011) Mid-Season water stress on yield and water use of millet (Panicum miliaceum) and sorghum (Sorghum bicolor L. Moench)Google Scholar
  53. Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343CrossRefGoogle Scholar
  54. FAO (2013) Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  55. FAOSTAT (2013) FAO Statistics YearBook 2013, Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  56. Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Nat Acad Sci 96(4):1175–1180Google Scholar
  57. Gahukar RT (1984) Insect pests of pearl millet in West Africa: a review. Trop Pest Manage 30:142–147CrossRefGoogle Scholar
  58. Gahukar RT (1988) Problems and perspectives of pest management in the Sahel: a case study of pearl millet. Trop Pest Manage 34:35–38CrossRefGoogle Scholar
  59. Gahukar RT (1991) Pest status and control of blister beetles in West Africa. Trop Pest Manage 37:415–420CrossRefGoogle Scholar
  60. Gale MD, Devos KM, Zhu JH, Allouis S, Couchman MS, Liu H, Pittaway TS, Qi XQ, Kolesnikova-Allen M, Hash CT (2005) New molecular marker technologies for pearl millet improvement. SAT eJournal 1:1–7Google Scholar
  61. Gemenet DC, Hash CT, Sanogo MD, Sy O, Zangre RG, Leiser WL, Haussmann BIG (2015) Phosphorus uptake and utilization efficiency in West African pearl millet inbred lines. Field Crops Res 171:54–66CrossRefGoogle Scholar
  62. George S, Prashanth SR, Parida A (2005) Diversity and species relationship in pearl millet (Pennisetum typhoides) and related species. J Plant Biochem Biotechnol 14:141–147CrossRefGoogle Scholar
  63. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330CrossRefPubMedPubMedCentralGoogle Scholar
  64. Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?. Trends Plant Sci 9(12):597–605Google Scholar
  65. Govindaraj M, Rai KN, Kanatti A, Velu G, Shivade H (2016) Breeding high-iron pearl millet cultivars: present status and future prospects. In: 2nd international conference on global food security. October 11–14, 2015, Ithaca, NY, USAGoogle Scholar
  66. Guo Y, Busta L, Jetter R (2017) Cuticular wax coverage and composition differ among organs of Taraxacum officinale. Plant Physiol Biochem 115:372–379CrossRefPubMedPubMedCentralGoogle Scholar
  67. Gupta SC (1995) Inheritance and allelic study of brown midrib trait in pearl millet. J Hered 86:301–303CrossRefGoogle Scholar
  68. Gupta GK, Singh D (1996) Studies on the influence of downy mildew infection on yield and yield-contributing plant characters of pearl millet in India. Intl J Pest Manag 42:89–93CrossRefGoogle Scholar
  69. Gupta SC, Monyo ES, Rao SA (1993) Registration of SDML 89107 brown midrib pearl millet germplasm. Crop Sci 33:882CrossRefGoogle Scholar
  70. Gupta SK, Velu G, Rai KN, Sumalini K (2009) Association of grain iron and zinc content with grain yield and other traits in pearl millet. Crop Improv 36:4–7Google Scholar
  71. Gupta SK, Sharma R, Rai KN, Thakur RP (2011) Inheritance of foliar blast resistance in pearl millet (Pennisetum glaucum). Plant Breed 131:217–219CrossRefGoogle Scholar
  72. Gupta SK, Nepolean T, Sankar SM (2015a) Patterns of molecular diversity in current and previously developed hybrid parents of pearl millet [Pennisetum glaucum (L.) R. Br.]. Amer J Plant Sci 6:1697–1712CrossRefGoogle Scholar
  73. Gupta SK, Rai KN, Singh P, Ameta VL, Gupta SK, Jayalekha AK, Mahala RS, Pareek S, Swami ML, Verma YS (2015b) Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.). Field Crops Res 171:41–53CrossRefGoogle Scholar
  74. Gupta SK, Nepolean T, Shaikh CG, Rai K, Hash CT, Das RR, Rathore A (2018) Phenotypic and molecular diversity-based prediction of heterosis in pearl millet (Pennisetum glaucum L. (R.) Br.). Crop J 6:271–281CrossRefGoogle Scholar
  75. Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274Google Scholar
  76. Hammer K (1984) Das domestikationssyndrom. Die Kult 32:11–34CrossRefGoogle Scholar
  77. Hanna WW (1987) Utilization of wild relatives of pearl millet. In: Witcombe JR, Beckman SR (eds) Proceedings of the international pearl millet workshop, ICRISAT, Patancheru, AP, India, pp 33–42Google Scholar
  78. Hanna WW, Burton GW (1992) Genetics of red and purple plant color in pearl millet. J Hered 83:386–388CrossRefGoogle Scholar
  79. Hanna WW, Dujardin M (1986) Cytogenetics of Pennisetum schweinfurthii Pilger and its hybrids with pearl millet. Crop Sci 26:449–453CrossRefGoogle Scholar
  80. Hanna WW, Wells HD, Burton GW (1985) Dominant gene for rust resistance in pearl millet. J Hered 76:134CrossRefGoogle Scholar
  81. Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553Google Scholar
  82. Harlan JR, De-Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  83. Hash CT, Thakur RP, Rao VP, Bhaskar RAG (2006) Evidence for enhanced resistance to diverse isolates of pearl millet downy mildew through gene pyramiding. Intl Sorghum Millets Newsl 47:134–138Google Scholar
  84. Haussmann BIG, Fred Rattunde H, Weltzien-Rattunde E, Traoré PSC, vom Brocke K, Parzies HK (2012) Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in West Africa. J Agron Crop Sci 198:327–339CrossRefGoogle Scholar
  85. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466CrossRefPubMedPubMedCentralGoogle Scholar
  86. He S, Yang Y, Morrell PL, Yi T (2015) Nucleotide sequence diversity and linkage disequilibrium of four nuclear loci in foxtail millet (Setaria italica). PLoS ONE 10:e0137088CrossRefPubMedPubMedCentralGoogle Scholar
  87. Hillman GC, Davis MS (1990) Domestication rates in wild-type wheats and barley under primitive cultivation. Biol J Linn Soc 39:39–78CrossRefGoogle Scholar
  88. Howarth CJ, Yadav RS (2002) Successful marker assisted selection for drought tolerance and disease resistance in pearl millet. Iger Innov 18–21Google Scholar
  89. Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741CrossRefPubMedPubMedCentralGoogle Scholar
  90. Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PVV, Morris GP (2015) Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16:1048Google Scholar
  91. Ibrahim YM, Marcarian V, Dobrenz AK (1985) Evaluation of drought tolerance in pearl millet (Pennisetum americanum (L.) Leeke) under a sprinkler irrigation gradient. Field Crops Res 11:233–240CrossRefGoogle Scholar
  92. Jagadish SVK, Septiningsih EM, Kohli A, Thomson MJ, Ye C, Redona E, Kumar A, Gregorio GB, Wassmann R, Ismail AM, Singh RK (2012) Genetic advances in adapting rice to a rapidly changing climate. J Agron Crop Sci 198:360–373CrossRefGoogle Scholar
  93. Jauhar PP (1981) Cytogenetics and breeding of pearl millet and related species. Alan R Liss, New York, USAGoogle Scholar
  94. Jauhar PP, Hanna WW (1998) Cytogenetics and genetics of pearl millet. Adv Agron 64:1–26CrossRefGoogle Scholar
  95. Jetter R, Kunst L, Samuels AL (2007) Composition of plant cuticular waxes. Ann Plant Rev 23:145–181Google Scholar
  96. Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91:448–456CrossRefGoogle Scholar
  97. Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR, Jonesa ES, Breeseb WA, Liuc CJ, Singhd SD, Shawb DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: Field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323CrossRefGoogle Scholar
  98. Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219CrossRefGoogle Scholar
  99. Jukanti AK, Gowda CLL, Rai KN, Manga VK, Bhatt RK (2016) Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics. Food Secur 8:307–329CrossRefGoogle Scholar
  100. Kam J, Puranik S, Yadav R, Manwaring HR, Pierre S, Srivastava RK, Yadav RS (2016) Dietary interventions for type 2 diabetes: how millet comes to help. Front Plant Sci 7:1454CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kannan B, Senapathy S, Bhasker Raj AG, Chandra S, Muthiah A, Dhanapal AP, Hash CT (2014) Association analysis of SSR markers with phenology, grain, and stover-yield related traits in pearl millet (Pennisetum glaucum (L.) R. Br.). Sci World J 2014:562327Google Scholar
  102. Kaushal P, Khare A, Nath Zadoo S, Roy A, Malaviya D, Agrawal A, Ali Siddiqui S, Nath Choubey R (2008) Sequential reduction of Pennisetum squamulatum genome complement in P. glaucum (2n = 28) × P. squamulatum (2n = 56) hybrids and their progenies revealed its octoploid status. Cytologia 73(2):151–158Google Scholar
  103. Khalfallah N, Sarr A, Siljak-Yakovlev S (1993) Karyological study of some cultivated and wild stocks of pearl millet from Africa (Pennisetum typhoides Stapf et Hubb. and P. violaceum (Lam.) L. Rich.). Caryologia 46:127–138CrossRefGoogle Scholar
  104. Kole C, Muthamilarasan M, Henry RJ, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, Cockram J, de Oliveira AC, De Pace C, Dempewolf H, Ellison S, Gepts P, Greenland A, Hall A, Hori K, Hughes S, Humphreys MW, Iorizzo M, Ismail AM, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Simon PW, Tohme J, Tuberosa R, Valliyodan B, Varshney RK, Wullschleger SD, Yano M, Prasad M, Kole C, Muthamilarasan M, Henry RJ, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, De Oliveira AC, De Pace C, Dempewolf H, Ellison S, Gepts P, Hall A, Hori K, Howe GT, Hughes S, Humphreys MW, Iorizzo M, Abdelbagi M, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563Google Scholar
  105. Kosma DK, Jenks MA (2007) Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, Dordrecht, pp 91–120CrossRefGoogle Scholar
  106. Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (l.) R. Br.]. Front Plant Sci 7:1636Google Scholar
  107. Kumar S, Hash CT, Nepolean T, Satyavathi CT, Singh G, Mahendrakar MD, Yadav RS, Srivastava RK (2017) Mapping QTLs controlling flowering time and important agronomic traits in pearl millet. Front Plant Sci 8:1731CrossRefPubMedPubMedCentralGoogle Scholar
  108. Kumar S, Hash CT, Nepolean T, Mahendrakar MD, Satyavathi CT, Singh G, Rathore A, Yadav RS, Gupta R, Srivastava RK (2018) Mapping grain iron and zinc content quantitative trait loci in an iniadi-derived immortal population of pearl millet. Genes 9:1–17CrossRefGoogle Scholar
  109. Kumari BR, Kolesnikova-Allen MA, Tom Hash C, Senthilvel S, Nepolean T, Kavi Kishor PB, Riera-Lizarazu O, Witcombe JR, Srivastava RK (2014) Development of a set of chromosome segment substitution lines in pearl millet. Crop Sci 54:2175Google Scholar
  110. Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117:221–234CrossRefPubMedPubMedCentralGoogle Scholar
  111. Kusaka M, Lalusin AG, Fujimura T (2005) The maintenance of growth and turgor in pearl millet (Pennisetum glaucum [L.] Leeke) cultivars with different root structures and osmo-regulation under drought stress. Plant Sci 168:1–14CrossRefGoogle Scholar
  112. Lagudah ES, Hanna WW (1989) Species relationship in the Pennisetum gene pool: enzyme polymorphism. Theor Appl Genet 78:801–808CrossRefPubMedPubMedCentralGoogle Scholar
  113. Lakis G, Navascués M, Rekima S, Simon M, Remigereau M-SS, Leveugle M, Takvorian N, Lamy F, Depaulis F, Robert T (2012) Evolution of neutral and flowering genes along pearl millet (Pennisetum glaucum) domestication. PLoS ONE 7:e36642CrossRefPubMedPubMedCentralGoogle Scholar
  114. Lambers H, Martinoia E, Renton M (2015) Plant adaptations to severely phosphorus-impoverished soils. Curr Opin Plant Biol 25:23–31CrossRefPubMedPubMedCentralGoogle Scholar
  115. Leder Iren (2004) Sorghum and millets, in cultivated plants, primarily as food sources. In: Füleky G (ed) Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO, vol 1. Eolss Publishers, Oxford, UK, p 66Google Scholar
  116. Li Y, Bhosale S, Haussmann BI, Stich B, Melchinger AE, Parzies HK (2018) Genetic diversity and linkage disequilibrium of two homologous genes to maize D8: sorghum SbD8 and pearl millet PgD8. J Plant Breed Crop Sci 2(5):117–128Google Scholar
  117. Liang Z, Gupta SK, Yeh C-T, Zhang Y, Ngu DW, Kumar R, Patil HT, Mungra KD, Yadav DV, Rathore A, Srivastava RK, Gupta R, Yang J, Varshney RK, Schnable PS, Schnable JC (2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. Genes Genomes|Genet 8:2513–252Google Scholar
  118. Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487CrossRefPubMedPubMedCentralGoogle Scholar
  119. Longin CF, Mi X, Wurschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306CrossRefPubMedPubMedCentralGoogle Scholar
  120. Maman N, Mason SC, Lyon DJ (2006) Nitrogen rate influence on pearl millet yield, nitrogen uptake, and nitrogen use efficiency in Nebraska. Commun Soil Sci Plant Anal 37:127–141CrossRefGoogle Scholar
  121. Manning K, Pelling R, Higham T, Schwenniger JL, Fuller DQ (2011) 4500-Year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: New insights into an alternative cereal domestication pathway. J Arch Sci 38:312–322CrossRefGoogle Scholar
  122. Marchais L, Pernes J (1985) Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides). I. Male sterility. Z Pflanzenzüchtg 95:103–112Google Scholar
  123. Martel E, Ricroch A, Sarr A (1996) Assessment of genome organization among diploid species (2n = 2x = 14) belonging to primary and tertiary gene pools of pearl millet using fluorescent in situ hybridization with rDNA probes. Genome 39:680–687CrossRefPubMedPubMedCentralGoogle Scholar
  124. Martel E, De Nay D, Siljak-Yakovlev S, Brown S, Sarr A (1997) Genome size variation and basic chromosome number in Pearl millet and fourteen related Pennisetum species. J Hered 88:139–143CrossRefGoogle Scholar
  125. Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of its phylogeny. Plant Syst Evol 249:139–149CrossRefGoogle Scholar
  126. Matsuura A, Inanaga S, Sugimoto Y (1996) Mechanism of interspecific differences among four gramineous crops in growth response to soil drying. Jpn J Crop Sci 65:352–360CrossRefGoogle Scholar
  127. McIntyre BD, Riha SJ, Flower DJ (1995) Water uptake by pearl millet in a semiarid environment. Field Crops Res 43:67–76CrossRefGoogle Scholar
  128. Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, Reddy MK (2007) Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol Biol 64:713–732CrossRefPubMedPubMedCentralGoogle Scholar
  129. Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height. J Ecol 97:923–932CrossRefGoogle Scholar
  130. Morgan RN, Wilson JP, Hanna WW, Ozias-Akins P (1998) Molecular markers for rust and pyricularia leaf spot disease resistance in pearl millet. Theor Appl Genet 96:413–420CrossRefPubMedPubMedCentralGoogle Scholar
  131. Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BIG, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35:1–10CrossRefGoogle Scholar
  132. Nagarathna KC, Shetty SA, Bhat SG, Shetty HS (1992) The possible involvement of lipoxygenase in downy mildew resistance in pearl millet. J Exp Bot 43:1283–1287CrossRefGoogle Scholar
  133. Naino Jika AK, Dussert Y, Raimond C, Garine E, Luxereau A, Takvorian N, Djermakoye RS, Adam T, Robert T (2017) Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad Basin. Heredity 118:491–502CrossRefPubMedPubMedCentralGoogle Scholar
  134. Nayaka SC, Shetty HS, Satyavathi CT, Yadav RS, Kishor PBK, Nagaraju M, Anoop TA, Kumar MM, Kuriakose B, Chakravartty N, Katta AVSKM, Lachagari VBR, Singh OV, Sahu PP, Puranik S, Kaushal P, Srivastava RK (2017) Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen. Biotechnol Rep 16:18–20CrossRefGoogle Scholar
  135. Nepolean T, Gupta SK, Dwivedi SL, Bhattacharjee R, Rai KN, Hash CT (2012) Genetic diversity in maintainer and restorer lines of pearl millet. Crop Sci 52:2555–2563CrossRefGoogle Scholar
  136. Nwanze KF, Harris KM (1992) Insect pests of pearl millet in West Africa. Rev Agri Entomol 80:1133–1155Google Scholar
  137. Obeng E, Cebert E, Ward R, Nyochembeng LM, Mays DA, Singh HP, Singh BP (2015) Insect incidence and damage on pearl millet (Pennisetum glaucum) under various nitrogen regimes in Alabama. Florida Entomol 98:74–79CrossRefGoogle Scholar
  138. Ochatt S, Sangwan R, Marget P, Yves Placide A, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440CrossRefGoogle Scholar
  139. Oelke EA, Oplinger ES, Putnam DH, Durgan BR, Doll JD, Undersander DJ (1990) Alternative field crops manual: millets. University of Wisconsin Cooperative or Extension Service, Department of Agronomy, Madison and Center for Alternative Plant and Animal Products, University of Minnesota, St. Paul, MNGoogle Scholar
  140. Oumar I, Mariac C, Pham J-LL, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497CrossRefGoogle Scholar
  141. Paleg LG, Stewart GR, Bradbeer JW (1984) Proline and glycine betaine influence protein solvation. Plant Physiol 75:974–978. Scholar
  142. Parvathaneni RK, Jakkula V, Padi FK, Faure S, Nagarajappa N, Pontaroli AC, Wu X, Bennetzen JL, Devos KM (2013) Fine-mapping and identification of a candidate gene underlying the d2 dwarfing phenotype in pearl millet, Cenchrus americanus (L.) Morrone. Genes Genomes Genet 3:563–572Google Scholar
  143. Parvathaneni RK, DeLeo VL, Spiekerman JJ, Chakraborty D, Devos KM (2017) Parallel loss of introns in the ABCB1 gene in angiosperms. BMC Evol Biol 17:238CrossRefPubMedPubMedCentralGoogle Scholar
  144. Passot S, Gnacko F, Moukouanga D, Lucas M, Guyomarc’h S, Ortega BM, Atkinson JA, Belko MN, Bennett MJ, Gantet P, Wells DM, Guédon Y, Vigouroux Y, Verdeil J-L, Muller B, Laplaze L (2016) Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci 7:1–11Google Scholar
  145. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev I V, Lyons E, Maher C a, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556Google Scholar
  146. Pattanashetti SK, Upadhyaya HD, Dwivedi SL, Vetriventhan M, Reddy KN (2016) Pearl millet. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic Press, San Diego, CA, pp 253–289CrossRefGoogle Scholar
  147. Payne WA, Malcolm DC, Hossner LR, Lascao RJ, Onken AB, Wendt CW (1992) Soil phosphorus availability and pearl millet water-use efficiency. Crop Sci 32:1010–1015CrossRefGoogle Scholar
  148. Peacock JM, Soman P, Jayachandran R, Rani AU, Howarth CJ, Thomas A (1993) Effects of high soil surface temperature on seedling survival in pearl millet. Exp Agri 29:215–225CrossRefGoogle Scholar
  149. Pedraza-Garcia F, Specht JE, Dweikat I (2010) A new PCR-based linkage map in pearl millet. Crop Sci 50:1754–1760CrossRefGoogle Scholar
  150. Perales HR, Benz BF, Brush SB (2005) Maize diversity and ethnolinguistic diversity in Chiapas, Mexico. Proc Natl Acad Sci USA 102:949–954. Scholar
  151. Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882CrossRefGoogle Scholar
  152. Poncet V, Lamy F, Devos KM, Gale MD, Sarr A, Robert T (2000) Genetic control of domestication traits in pearl millet (Pennisetum glaucum L., Poaceae). Theor Appl Genet 100:147–159CrossRefGoogle Scholar
  153. Punnuri SM, Wallace JG, Knoll JE, Hyma KE, Mitchell SE, Buckler ES, Varshney RK, Singh BP (2016) Development of a high-density linkage map and tagging leaf spot resistance in pearl millet using genotyping-by-sequencing markers. Plant Genome 9:1–13CrossRefGoogle Scholar
  154. Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM (2001) Development of simple sequence repeat markers from bacterial artificial chromosomes without subcloning. Biotechniques 31:355–362CrossRefGoogle Scholar
  155. Qi X, Pittaway TS, Lindup S, Liu H, Waterman E, Padi FK, Hash CT, Zhu J, Gale MD, Devos KM (2004) An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109:1485–1493CrossRefGoogle Scholar
  156. Rai KN, Hanna WW (1990) Morphological characteristics of tall and dwarf pearl millet isolines. Crop Sci 30:23–25CrossRefGoogle Scholar
  157. Rai KN, Virk DS (1999) Breeding methods. In: Khairwal IS, Rai KN, Andrews DJ, Harinarayana G (eds) Pearl millet breeding. Oxford & IBH Publishing, New Delhi, India, pp 185–211Google Scholar
  158. Rai KN, Gupta SK, Bhattacharjee R, Kulkarni V, Singh AK, Rao AS (2009) Morphological characteristics of ICRISAT-bred pearl millet hybrid seed parents. J SAT Agri Res 7:1–169Google Scholar
  159. Rai KN, Govindaraj M, Rao AS (2012) Genetic enhancement of grain iron and zinc content in pearl millet. Qual Assur Saf Crop Foods 4:119–125CrossRefGoogle Scholar
  160. Rai KN, Yadav OP, Rajpurohit BS, Patil HT, Govindaraj M, Khairwal IS, Rao AS, Shivade H, Pawar VY (2013) Breeding pearl millet cultivars for high iron density with zinc density as an associated trait. J SAT Agri Res 11:1–7Google Scholar
  161. Rai KN, Velu G, Govindaraj M, Upadhyaya HD, Rao AS, Shivade H, Reddy KN, Rai KN, Velu G, Govindaraj M, Upadhyaya HD, Rao AS, Shivade H, Reddy KN (2015) Iniadi pearl millet germplasm as a valuable genetic resource for high grain iron and zinc densities. Plant Genet Resour 13:75–82. Scholar
  162. Raj C, Sharma R, Pushpavathi B, Gupta SK, Radhika K (2018) Inheritance and allelic relationship among downy mildew resistance genes in pearl millet. Plant Dis 102:1136–1140CrossRefGoogle Scholar
  163. Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, Shah TM, Supriya A, Kumar S, Kumari BR, Bhanuprakash A, Narasu ML, Riera-Lizarazu O, Hash CT (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14:159Google Scholar
  164. Raju NSN, Rao YS, Rao MVS, Manga V (1985) Anthocyanidins of purple and sub-red pigmentation in pearl millet (Pennisetum americanum). Indian J Bot 8:185–186Google Scholar
  165. Ramakrishnan TS (1971) Diseases of millets. Indian Council of Agriculture Research, New Delhi, IndiaGoogle Scholar
  166. Ramya AR, Ahamed ML, Satyavathi CT, Rathore A, Katiyar P, Raj AGB, Kumar S, Gupta R, Mahendrakar MD, Yadav RS, Srivastava RK (2018) Towards defining heterotic gene pools in pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 8:1934Google Scholar
  167. Rao SA, Mengesha MH, Sharma D (1985) Collection and evaluation of pearl millet (Pennisetum americanum) germplasm from Ghana. Econ Bot 39:25–38CrossRefGoogle Scholar
  168. Rao PP, Birthal PS, Reddy BVS, Rai KN, Ramesh S (2006) Diagnostics of sorghum and pearl millet grains-based nutrition in India. Intl Sorghum Millets Newsl 47:93–96Google Scholar
  169. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484CrossRefGoogle Scholar
  170. Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51:447–458CrossRefGoogle Scholar
  171. Robert T, Khalfallah N, Martel E, Lamy F, Poncet V, Allinne C, Remigereau M-S, Rekima S, Leveugle M, Lakis G, Siljak-Yakovlev S, Sarr A (2011) Pennisetum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, millets and grasses. Springer, Berlin, Heidelberg, pp 217–255CrossRefGoogle Scholar
  172. Rostamza M, Richards RA, Watt M (2013) Response of millet and sorghum to a varying water supply around the primary and nodal roots. Ann Bot 112:439–446CrossRefPubMedPubMedCentralGoogle Scholar
  173. Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586CrossRefPubMedPubMedCentralGoogle Scholar
  174. Safriel U, Adeel Z, Niemeijer D, Puigdefabregas J, White R, Lal R, Winslow M, Ziedler J, Prince S, Archer E, King C, Shapiro B, Wessels K, Nielsen T, Portnov B, Reshef I, Thonell J, Lachman E, Mcnab D (2005) Dryland systems. Washington DC, USAGoogle Scholar
  175. Saïdou AA, Mariac C, Luong V, Pham JL, Bezançon G, Vigouroux Y (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182:899–910CrossRefPubMedPubMedCentralGoogle Scholar
  176. Saïdou A-A, Clotault J, Couderc M, Mariac C, Devos KM, Thuillet A-C, Amoukou IA, Vigouroux Y (2014) Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the Phytochrome C gene in pearl millet. Theor Appl Genet 127:19–32CrossRefGoogle Scholar
  177. Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489CrossRefGoogle Scholar
  178. Sanon M, Hoogenboom G, Traoré SB, Sarr B, Garcia Y, Garcia A, Somé L, Roncoli C (2014) Photoperiod sensitivity of local millet and sorghum varieties in West Africa. NJAS—Wageningen J Life Sci 68:29–39Google Scholar
  179. Sattler SE, Funnell-Harris DL, Pedersen JF (2010) Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci 178:229–238CrossRefGoogle Scholar
  180. Schnable PS (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115CrossRefPubMedPubMedCentralGoogle Scholar
  181. Schoper JB, Lambert RJ, Vasilas BL, Westgate ME (1987) Plant factors controlling seed set in maize: the influence of silk, pollen, and ear-leaf water status and tassel heat treatment at pollination. Plant Physiol 83:121–125CrossRefPubMedPubMedCentralGoogle Scholar
  182. Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12:9CrossRefPubMedPubMedCentralGoogle Scholar
  183. Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS ONE 10:e0122165CrossRefPubMedPubMedCentralGoogle Scholar
  184. Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash C (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8:119CrossRefPubMedPubMedCentralGoogle Scholar
  185. Serba DD, Yadav RS (2016) Genomic tools in pearl millet breeding for drought tolerance: status and prospects. Front Plant Sci 7:1724CrossRefPubMedPubMedCentralGoogle Scholar
  186. Serba DD, Perumal R, Tesso TT, Min D (2017) Status of global pearl millet breeding programs and the way forward. Crop Sci 57:2891–2905CrossRefGoogle Scholar
  187. Serba DD, Muleta KT, St Amand P, Bernardo A, Bai G, Ramasamy P, Bashir E (2019) Genetic diversity, population structure, and linkage disequilibrium in pearl millet. The Plant Genome. Scholar
  188. Serraj R, Tom Hash C, Rizvi SMH, Sharma A, Yadav RS, Bidinger FR (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8:334–337CrossRefGoogle Scholar
  189. Shivhare R, Lata C (2016) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069PubMedGoogle Scholar
  190. Siddaiah CN, Satyanarayana NR, Mudili V, Kumar Gupta V, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:43991CrossRefPubMedPubMedCentralGoogle Scholar
  191. Singh SD (1990) Sources of resistance to downy mildew and rust in pearl millet. Plant Dis 74:871–874CrossRefGoogle Scholar
  192. Singh SD (1995) Downy mildew of pearl millet. Plant Dis 79:545–550CrossRefGoogle Scholar
  193. Singh SD, Williams RJ (1980) The role of sporangia in the epidemiology of pearl millet downy mildew. Phytopathology 70:1187–1190CrossRefGoogle Scholar
  194. Singh SD, Wilson JP, Navi SS, Talukdar BSS, Hess DE, Reddy KN (1997) Screening techniques and sources of resistance to downy mildew and rust in pearl millet. ICRISAT, 110 pp, Patancheru, IndiaGoogle Scholar
  195. Singh S, Sharma R, Pushpavathi B, Gupta SK, Durgarani CV, Raj C (2018) Inheritance and allelic relationship among gene(s) for blast resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Breed 137:573–584CrossRefGoogle Scholar
  196. Sivakumar MVK, Salaam SA (1999) Effect of year and fertilizer on water-use efficiency of pearl millet (Pennisetum glaucum) in Niger. J Agri Sci 132:139–148CrossRefGoogle Scholar
  197. Srinivasarao C, Lal R, Kundu S, Babu MBBP, Venkateswarlu B, Singh AK (2014) Soil carbon sequestration in rainfed production systems in the semiarid tropics of India. Sci Total Environ 487:587–603CrossRefPubMedPubMedCentralGoogle Scholar
  198. Stapf O, Hubbard CE (1934) Pennisetum. In: Prain D (ed) Flora of tropical Africa, vol 9 part 6, Gramineae (Maydeae–Paniceae). Reeve, London, pp 954–1070Google Scholar
  199. Stich B, Haussmann BI, Pasam R, Bhosale S, Hash CT, Melchinger AE, Parzies HK (2010) Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from West and Central Africa and their relation to geographical and environmental parameters. BMC Plant Biol 10:216Google Scholar
  200. Stone P (2001) The effects of heat stress on cereal yield and quality. In: Basra AS (ed) Crop responses and adaptations to temperature stress. Food Products Press, Binghamton, NY, USA, pp 243–291Google Scholar
  201. Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649 LP-1665Google Scholar
  202. Sultan B, Roudier P, Quirion P, Alhassane A, Muller B, Dingkuhn M, Ciais P, Guimberteau M, Traore S, Baron C (2013) Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ Res Lett 8:014040CrossRefGoogle Scholar
  203. Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Hash CT, Kilian A, Yadav RC, Narasu ML (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123:239–250CrossRefGoogle Scholar
  204. Swaminathan M (1937) The relative value of the proteins of certain foodstuffs in nutrition. Indian J Med Res 24:767–786Google Scholar
  205. Swaminathan MS, Naik MS, Kaul AK, Austin A (1971) Choice of strategy for the genetic upgrading of protein properties in cereals, millets and pulses. Indian J Agril Res 41:393–406Google Scholar
  206. Takei E, Sakamoto S (1987) Geographical variation of heading response to daylength in foxtail millet (Setaria italica P. BEAUV.). Jpn J Breed 37:150–158CrossRefGoogle Scholar
  207. Tapsoba H, Wilson JP (1995) Isolation of pathogenic races of Puccinia substriata var. indica with new sources of rust resistant pearl millet. In: Peare ID (ed) Proceedings of the first national grain pearl millet symposium. University of Georgia, Tifton, GA, USA, pp 57–60Google Scholar
  208. Thakur RP, Shetty HS, Khairwal IS (2006) Pearl millet downy mildew research in India: progress and perspectives. J SAT Agri Res 2:1–6Google Scholar
  209. Thakur RP, Rai KN, Khairwal IS, Mahala RS (2008) Strategy for downy mildew resistance breeding in pearl millet in India. SAT eJournal 6:1–11Google Scholar
  210. Thakur RP, Sharma R, Rao VPP, Rajan S, Rao VPP (2011) Screening techniques for pearl millet diseases. Information Bulletin No 89. ICRISAT, Patancheru, IndiaGoogle Scholar
  211. Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337CrossRefGoogle Scholar
  212. Traore M (1985) Physiological and morphological mechanisms of drought resistance in sorghum and pearl millet. I. Effects of leaf treatment with abscisic acid. II. Seed pre-treatment with abscisic acid. III. Comparative shoot and root development. IV. Leaf surface morphol. University of Nebraska, LincolnGoogle Scholar
  213. Trostle C, Corriher-Olson V, Knutson A (2015) Hybrid pearl millet as an alternative to sugarcane aphid-susceptible sorghum family forages. Texas A&M AgriLife Extension ServiceGoogle Scholar
  214. Upadhyaya HD, Reddy KN, Gowda CLL (2007) Pearl millet germplasm at ICRISAT genebank—status and impact. SAT eJournal 3:1–5Google Scholar
  215. Upadhyaya HD, Yadav D, Reddy KN, Gowda CLL, Singh S (2011) Development of pearl millet minicore collection for enhanced utilization of germplasm. Crop Sci 51:217–223CrossRefGoogle Scholar
  216. Upadhyaya H, Reddy K, Ahmed MI, Dronavalli N, Laxmipathi Gowda C (2012) Latitudinal variation and distribution of photoperiod and temperature sensitivity for flowering in the world collection of pearl millet germplasm at ICRISAT genebank. Plant Genet Resour 10:59–69CrossRefGoogle Scholar
  217. USDA (2014) Comparison of five millet species for conservation use in the United States. USDA Plant Materials Technical Note No 2, 12 ppGoogle Scholar
  218. Varalakshmi P, Mohan Dev Tavva SS, Arjuna Rao PV, Subba Rao MV, Hash CT (2012) Genetic architecture of purple pigmentation and tagging of some loci to SSR markers in pearl millet, Pennisetum glaucum (L.) R. Br. Genet Mol Biol 35:106–118CrossRefPubMedPubMedCentralGoogle Scholar
  219. Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta SK, Wang H, Jiang Y, Couderc M, Katta MAVSK, Paudel DR, Mungra KD, Chen W, Harris-Shultz KR, Garg V, Desai N, Doddamani D, Kane NA, Conner JA, Ghatak A, Chaturvedi P, Subramaniam S, Yadav OP, Berthouly-Salazar C, Hamidou F, Wang J, Liang X, Clotault J, Upadhyaya HD, Cubry P, Rhoné B, Gueye MC, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala RS, Singh B, Yadav RS, Lyons E, Datta SK, Tom Hash C, Devos KM, Buckler E, Bennetzen JL, Paterson AH, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif JC, Liu X, Vigouroux Y, Xu X (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976CrossRefPubMedPubMedCentralGoogle Scholar
  220. Varshney RK, Singh VK, Kumar A, Powell W, Sorrells ME (2018) Can genomics deliver climate-change ready crops? Curr Opin Plant Biol 1–7.
  221. Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, CambridgeGoogle Scholar
  222. Velu G, Rai KN, Muralidharan V, Kulkarni VN, Longvah T, Raveendran TS (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126:182–185CrossRefGoogle Scholar
  223. Vengadessan V, Rai KN, Kannan Bapu JR, Hash CT, Bhattacharjee R, Senthilvel S, Vinayan MT, Nepolean T (2013) Construction of genetic linkage map and QTL analysis of sink-size traits in pearl millet (Pennisetum glaucum). ISRN Genet 2013:1–14CrossRefGoogle Scholar
  224. Vinoth A, Ravindhran R (2017) Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci 8:29CrossRefPubMedPubMedCentralGoogle Scholar
  225. Wang C, Guo L, Li Y, Wang Z (2012) Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Syst Biol 6:S9–S9CrossRefPubMedPubMedCentralGoogle Scholar
  226. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29Google Scholar
  227. Westengen OT, Okongo MA, Onek L, Berg T, Upadhyaya H, Birkeland S, Kaur Khalsa SD, Ring KH, Stenseth NC, Brysting AK (2014) Ethnolinguistic structuring of sorghum genetic diversity in Africa and the role of local seed systems. Proc Natl Acad Sci USA 111:14100–14105CrossRefPubMedGoogle Scholar
  228. White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013) Matching roots to their environment. Ann Bot 112:207–222CrossRefPubMedPubMedCentralGoogle Scholar
  229. Wilson JP (2002) Disease of pearl millet in the Americas. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State Press, Ames, Iowa, pp 465–469Google Scholar
  230. Wilson JP, Hanna WW (1992) Effects of gene and cytoplasm substitutions in pearl millet on leaf blight epidemics and infection by Pyricularia grisea. Phytopathology 82:839–842CrossRefGoogle Scholar
  231. Wilson JP, Hanna WW, Gascho G, Wilson DM (1995) Pearl millet grain yield loss from rust infection. In: Teare ID (ed) Proceedings of the first national grain pearl millet symposium. University of Georgia, Tifton, GA, USA, pp 54–56Google Scholar
  232. Wilson JP, Hess DE, Hanna WW, Kumar KA, Gupta SC (2004) Pennisetum glaucum subsp. monodii accessions with Striga resistance in West Africa. Crop Protec 23:865–870CrossRefGoogle Scholar
  233. Wimpee CF, Rawson JRY (1979) Characterization of the nuclear genome of pearl millet. Biochim Biophys Acta—Nucl Acids Protein Synth 562:192–206CrossRefGoogle Scholar
  234. Xue D, Zhang X, Lu X, Chen G, Chen Z-H (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621CrossRefPubMedPubMedCentralGoogle Scholar
  235. Yadav OP (2010) Drought response of pearl millet landrace-based populations and their crosses with elite composites. Field Crops Res 118:51–56. Scholar
  236. Yadav OP, Rai KN (2013) Genetic improvement of pearl millet in India. Agri Res 2:275–292CrossRefGoogle Scholar
  237. Yadav RS, Hash CT, Bidinger FR, Howarth CJ (1999) QTL analysis and marker-assisted breeding of traits associated with drought tolerance in pearl millet. In: Ito O, O’Toole J, Hardy B (eds) Genetic improvement of rice for water-limited environments. International Rice Research Institute, Manila, Philippines, pp 221–233Google Scholar
  238. Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104:67–83CrossRefPubMedPubMedCentralGoogle Scholar
  239. Yadav R, Bidinger F, Hash C, Yadav Y, Yadav O, Bhatnagar S, Howarth C (2003) Mapping and characterisation of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520CrossRefPubMedPubMedCentralGoogle Scholar
  240. Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277CrossRefGoogle Scholar
  241. Yadav OP, Rai KN, Gupta SK (2012) Pearl millet: genetic improvement in tolerance to abiotic stresses. In: Improving crop productivity in sustainable agriculture, pp 261–288Google Scholar
  242. Yadav O, Rai K, Yadav H, Rajpurohit B, Gupta S, Rathore A, Karjagi C (2016) Assessment of diversity in commercial hybrids of pearl millet in India. Indian J Plant Genet Resour 29:130CrossRefGoogle Scholar
  243. Yadav OP, Upadhyaya HD, Reddy KN, Jukanti AK, Pandey S, Tyagi RK (2017) Genetic resources of pearl millet: status and utilization. Indian J Plant Genet Resour 30:31–47CrossRefGoogle Scholar
  244. Yakubu H, Ngala AL, Dugje IY (2010) Screening of millet (Pennisetum glaucum L.) varieties for salt tolerance in semi-arid soil of Northern Nigeria. World J Agri Sci 6:374–380Google Scholar
  245. Yu J (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92CrossRefGoogle Scholar
  246. Zegada-Lizarazu W, Iijima M (2005) Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Prod Sci 8:454–460CrossRefGoogle Scholar
  247. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Agricultural Research Center-Hays, Kansas State UniversityHaysUSA
  2. 2.Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwythUK
  3. 3.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  4. 4.Department of AgronomyKansas State UniversityManhattanUSA

Personalised recommendations