Increasing Genetic Gains in Maize in Stress-Prone Environments of the Tropics

  • B. M. PrasannaEmail author
  • Sudha K. Nair
  • Raman Babu
  • Manje Gowda
  • Xuecai Zhang
  • Yunbi Xu
  • Mike Olsen
  • Vijay Chaikam
  • Jill E. Cairns
  • Mainassara Zaman-Allah
  • Yoseph Beyene
  • Amsal Tarekegne
  • Cosmos Magorokosho


Maize (Zea mays L.) provides food security, income, and livelihoods to millions of smallholders in the developing world. However, maize yields in the tropical rainfed environments, especially in sub-Saharan Africa and South Asia, are affected by an array of abiotic and biotic stresses, thereby limiting national maize yields to 1–3 tons per hectare (t/ha), while the global average is around 5 t/ha. Therefore, developing and deploying high-yielding, climate-resilient maize (with tolerance to drought, heat, waterlogging, and biotic stresses), coupled with climate-smart agricultural practices, are critical for improving maize yields, and reducing the high risk and vulnerability of the maize-growing smallholder farmers in the tropics to the climate variability. CIMMYT (International Maize and Wheat Improvement Center) has been intensively engaged since 1970s in breeding elite tropical maize germplasm with tolerance to important abiotic stresses, especially drought, using managed-stress screening and selection for key secondary traits. This formed the base for successful development, testing, and deployment of CIMMYT-derived abiotic stress-tolerant maize varieties in sub-Saharan Africa, Latin America, and Asia, in partnership with an array of public and private sector institutions. Increasing genetic gains and breeding efficiency, especially in developing elite multiple stress-tolerant maize germplasm, requires: (a) carefully undertaken field-based phenotyping at several relevant sites as well as under technically demanding managed-stress screens; (b) better understanding of the genetic architecture of traits; and (c) utilization of modern breeding tools/strategies, including high-throughput and reasonably precise field-based phenotyping, doubled haploid (DH) technology, molecular marker-assisted breeding, genomic selection, transgenics, breeding information management, and decision-support system. At the same time, it has become imperative to defend the genetic gains from devastating transboundary diseases (e.g., maize lethal necrosis or MLN) and insect-pests (e.g., Fall armyworm). Multi-institutional efforts, especially public–private alliances, are key to ensure that the improved varieties effectively reach the climate change-vulnerable farming communities, and to develop and deploy technologies that can protect the maize crops of the smallholders in the tropics from the emerging biotic threats.


Maize Climate resilience Genetic gains Phenotyping Molecular markers Seed systems Tropics 



The work presented in this article was supported by the CGIAR Research Program on Maize (MAIZE), and several multi-institutional projects implemented by CIMMYT with partners in sub-Saharan Africa, Asia, and Latin America. The CGIAR Research Program MAIZE receives W1&W2 support from the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, U.K., U.S., and the World Bank.


  1. Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high throughput phenotyping into genetic gain. Trends Plant Sci 23:451–466CrossRefPubMedPubMedCentralGoogle Scholar
  2. Babu R, Nair SK, Kumar A, Venkatesh S, Sekhar JC, Singh NN, Srinivasan G, Gupta HS (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor Appl Genet 111:888–897CrossRefGoogle Scholar
  3. Babu R, Rojas NP, Gao S, Yan J, Pixley K (2013) Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin a concentrations for 26 tropical maize populations. Theor Appl Genet 126:389–399CrossRefGoogle Scholar
  4. Badu-Apraku B, Fakorede MAB, Talabi AO, Oyekunle M, Akaogu IC, Akinwale RO, Annor B, Melaku G, Fasanmade Y, Aderounmu M (2016) Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments. Crop Sci 56:183–199CrossRefGoogle Scholar
  5. Badu-Apraku B, Yallou CG, Oyekunle M (2013) Genetic gains from selection for high grain yield and Striga resistance in early maturing maize cultivars of three breeding periods under Striga-infested and Striga-free environments. Field Crops Res 147:54–67CrossRefGoogle Scholar
  6. Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genom 279:1–10CrossRefGoogle Scholar
  7. Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet 129:2323–2332CrossRefGoogle Scholar
  8. Beyene Y, Mugo S, Oikeh SO, Juma C, Olsen M, Prasanna BM (2017) Hybrids performance of doubled haploid lines derived from 10 tropical bi-parental maize populations evaluated in contrasting environments in Kenya. Afr J Biotechnol 16:371–379. Scholar
  9. Beyene Y, Semagn K, Crossa J, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Olsen M, Prasanna BM, Atlin GN, Vargas M, Banziger M (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163CrossRefGoogle Scholar
  10. Beyene Y, Semagn K, Mugo S, Prasanna BM, Tarekegne A, Gakunga J, Sehabiague P, Meisel B, Oikeh SO, Olsen M, Crossa J (2016) Performance and grain yield stability of maize populations developed using marker-assisted recurrent selection and pedigree selection procedures. Euphytica 208:285–297CrossRefGoogle Scholar
  11. Bortiri E, Jackson D, Hake S (2006) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9:164–171CrossRefGoogle Scholar
  12. Bruulsema T, Tollenaar M, Heckman J (2000) Boosting crop yields in the next century. Better Crop 84:9–13Google Scholar
  13. Buckler E, Ilut DC, Wang XY, Kretzschmar T, Gore MA, Mitchell SE (2016) rAmpSeq: using repetitive sequences for robust genotyping. bioRxiv,
  14. Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C, Fan L, Gao S, Xu X, Zhang G, Li Y, Jiao Y, Doebley JF, Ross-Ibarra J, Lorant A, Buffalo V, Romay MC, Buckler ES, Ware D, Lai J, Sun Q, Xu Y (2018) Construction of the third-generation Zea mays haplotype map. Gigascience 7:1–12. Scholar
  15. Cairns JE, Prasanna BM (2018) Developing and deploying climate-resilient maize varieties in the developing world. Curr Opin Plant Biol 45.
  16. Cairns JE, Sonder K, Zaidi PH, Verhulst N, Mahuku G, Babu R, Nair SK, Das B, Govaerts B, Vinayan MT, Rashid Z, Noor JJ, Devi P, San Vicente F, Prasanna BM (2012) Maize production in a changing climate: impacts, adaptation and mitigation strategies. Adv Agron 114:1–58CrossRefGoogle Scholar
  17. Cao S, Loladze A, Yuan Y, Wu Y, Zhang A, Chen J, Huestis G, Cao J, Chaikam V, Olsen M, Prasanna BM, San Vicente F, Zhang X (2017) Genome-wide analysis of tar spot complex resistance in maize using genotyping-by-sequencing SNPs and whole-genome prediction. Plant Genome 10:1–14. Scholar
  18. Chaikam V, Nair SK, Martinez L, Lopez LA, Utz HF, Melchinger AE, Prasanna BM (2018) Marker-assisted breeding of improved maternal haploid inducers in maize for the tropical/subtropical regions. Front Plant Sci 9:1527.
  19. Challinor AJ, Koehler A-K, Ramirez-Villegas J, Whitfield S, Das B (2016) Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat Clim Change 6:954–958CrossRefGoogle Scholar
  20. Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhäjärvi T, Rong T, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803CrossRefGoogle Scholar
  21. Ci X, Li M, Liang X, Xie Z, Zhang D, Li X (2011) Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci 51:13–20CrossRefGoogle Scholar
  22. Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376CrossRefPubMedPubMedCentralGoogle Scholar
  23. Combs E, Bernardo R (2013) Accuracy of genome-wide selection for different traits with constant population size, heritability, and number of markers. Plant Genome 6:1–7CrossRefGoogle Scholar
  24. Cooper M, Messina CD, Podlich D et al (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336CrossRefGoogle Scholar
  25. Crommelinck S, Höfle B (2016) Simulating an autonomously operating low-cost static terrestrial LiDAR for multitemporal maize crop height measurements. Remote Sens 8:205. Scholar
  26. De Groote H, Oloo F, Tongruksawattana S, Das B (2016) Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya. Crop Protec 82:30–35CrossRefGoogle Scholar
  27. Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing AL, Aung HH, Nelissen H, Baute J, Frascaroli E, Churchill GA, Inzé D, Morgante M, Pè ME (2015) Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol 16:1–23. Scholar
  28. Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361:916–919CrossRefGoogle Scholar
  29. Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145CrossRefGoogle Scholar
  30. Early R, Gonzalez-Moreno P, Murphy ST, Day R (2018) Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. bioRxiv
  31. Edmeades GO, Bolaños J, Chapman SC, Lafitte HR, Banziger M (1999) Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci 39:1306–1315CrossRefGoogle Scholar
  32. Edmeades GO, Trevisan W, Prasanna BM, Campos H (2017) Tropical maize (Zea mays L.). In: Genetic improvement of tropical crops, Springer, Cham, pp 57–109Google Scholar
  33. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Addison Wesley Longman, HarlowGoogle Scholar
  34. FAOSTAT (2018) FAO statistical database. FAO, Rome, ItalyGoogle Scholar
  35. Feng F, Wang Q, Liang C, Yang R, Li X (2015) Enhancement of tocopherols in sweet corn by marker-assisted backcrossing of ZmVTE4. Euphytica 206:513–521CrossRefGoogle Scholar
  36. Fentahun M, Feyissa T, Abraham A, Kwak HR (2017) Detection and characterization of maize chlorotic mottle virus and sugarcane mosaic virus associated with maize lethal necrosis disease in Ethiopia: an emerging threat to maize production in the region. Eur J Plant Pathol 149:1011–1017CrossRefGoogle Scholar
  37. Frey TJ (2006) Fine-mapping, cloning, verification, and fitness evaluation of a QTL, Rcg1, which confers resistance to Colletotrichum graminicola in maize. PhD Dissertation, University of Delaware, USAGoogle Scholar
  38. Friedli M, Kirchgessner N, Grieder C, Liebisch F, Mannale M, Walter A (2016) Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Meth 12:9. Scholar
  39. Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578CrossRefGoogle Scholar
  40. Gao S, Martinez C, Skinner DJ, Krivanek AF, Crouch JH, Xu Y (2008) Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Mol Breed 22:477–494CrossRefGoogle Scholar
  41. Gilles LM, Khaled A, Laffaire J, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant JP, Rogowsky PM, Widiez T (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717CrossRefPubMedPubMedCentralGoogle Scholar
  42. Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol J 14:1099–1105CrossRefGoogle Scholar
  43. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117CrossRefGoogle Scholar
  44. Gowda M, Das B, Makumbi D, Babu R, Semagn K, Mahuku G, Olsen MS, Bright JM, Beyene Y, Prasanna BM (2015) Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet 128:1957–1968CrossRefPubMedPubMedCentralGoogle Scholar
  45. Gowda M, Beyene Y, Makumbi D, Semagn K, Olsen MS, Bright JM, Das B, Mugo S, Suresh LM, Prasanna BM (2018) Discovery and validation of genomic regions associated with resistance to maize lethal necrosis in four biparental populations. Mol Breed 38:66.
  46. Gowda M, Worku M, Nair SK, Palacios-Rojas N, Prasanna BM (2017) Quality Assurance/Quality Control (QA/QC) in maize breeding and seed production: theory and practice. Nairobi, CIMMYT, p 28Google Scholar
  47. Gupta HS, Agrawal PK, Mahajan V, Bisht GS, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant MC, Mani VP (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237Google Scholar
  48. Hämmerle H, Höfle B (2016) Direct derivation of maize plant and crop height from low-cost time-of-flight camera measurements. Plant Meth 12:50. Scholar
  49. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hindu V, Palacios N, Babu R, Suwarno WB, Rashid Z, Usha R, Saykhedkar GR, Nair SK (2018) Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theor Appl Genet. Scholar
  51. Horikoshi RJ, Bernardi D, Bernardi O, Malaquias JB, Okuma DM, Miraldo LL, Amara FSD, Omoto C (2016) Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management. Sci Rep 6:34864CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hossain F, Muthusamy V, Pandey N, Vishwakarma AK, Baveja A et al (2018a) Marker-assisted introgression of opaque2 allele for rapid conversion of elite maize hybrids into quality protein maize. J Genet 97:287–298CrossRefGoogle Scholar
  53. Hossain F, Muthusamy V, Zunjare RU (2018b) Molecular breeding for development of biofortified maize hybrids in India. In: Prasanna BM, Das A, Kaimenyi KK (eds) Book of extended summaries, 13th Asian maize conference and expert consultation on maize for food, feed, nutrition and environmental security. Ludhiana, India, 8–10 Oct 2018. CIMMYT, Mexico D.F., pp 210–220Google Scholar
  54. Hurni S, Scheuermann D, Krattinger SG et al (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci USA 112:8780–8785. Scholar
  55. ISAAA (2017) Global status of commercialized Biotech/GM crops: 2017. ISAAA Brief No. 53. ISAAA: Ithaca, NYGoogle Scholar
  56. Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987CrossRefGoogle Scholar
  57. Kelliher T, Starr D, Richbourg L et al (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109CrossRefGoogle Scholar
  58. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Meth 9:1–9CrossRefGoogle Scholar
  59. Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186CrossRefGoogle Scholar
  60. Liang X, Wang K, Huang C, Zhang X, Yan J, Yang W (2016) A high-throughput maize kernel traits scorer based on line-scan imaging. J Intl Measure Confed 90:453–460CrossRefGoogle Scholar
  61. Liu C, Li X, Meng D, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017a) A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol Plant 10:520–522CrossRefGoogle Scholar
  62. Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J, Lübberstedt T, Xu M (2017b) An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant 10:483–497CrossRefGoogle Scholar
  63. Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ et al (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914CrossRefPubMedPubMedCentralGoogle Scholar
  64. Luque SF, Cirilo AG, Otegui ME (2006) Genetic gains in grain yield and related physiological attributes in argentine maize hybrids. Field Crops Res 95:383–397CrossRefGoogle Scholar
  65. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Mass, USA, 980 p.
  66. Mahuku G, Lockhart BE, Wanjala B, Jones MW, Kimunye JN, Stewart LR, Cassone BJ, Sevgan S, Johnson N, Kusia E, Lava Kumar P, Niblett CL, Wangai A, Kiggundu A, Asea G, Pappu H, Prasanna BM, Redinbaugh MG (2015) Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 105:956–965CrossRefGoogle Scholar
  67. Makanza R, Zaman-Allah M, Cairns JE, Magorokosho C, Tarekegne A, Olsen M, Prasanna BM (2018a) High-throughput phenotyping of canopy cover and senescence in maize field trials using aerial digital canopy imaging. Remote Sens 10(2):330.
  68. Makanza R, Zaman-Allah M, Cairns JE, Eyre J, Burgueño J, Pacheco A, Diepenbrock C, Magorokosho, Tarekegne A, Olsen M, Prasanna BM (2018b) High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Plant Meth 14:49.
  69. Marenya P, Erenstein O, Prasanna BM, Makumbi D, Bright J, Beyene Y (2018) Maize lethal necrosis disease: evaluating agronomic and genetic control strategies for Ethiopia and Kenya. Agri Syst 162:220–228CrossRefGoogle Scholar
  70. Masuka B, Atlin GN, Olsen M, Magorokosho C, Labuschagne M, Crossa J, Bänziger M, Pixley K, Vivek B, Biljon AV, Macrobert J, Prasanna BM, Makumbi D, Tarekegne A, Das B, Zaman-Allah M, Cairns JE (2017a) Gains in maize genetic improvement in eastern and southern Africa: I CIMMYT hybrid breeding pipeline. Crop Sci 57:168–179CrossRefGoogle Scholar
  71. Masuka B, Magorokosho C, Olsen M, Atlin GN, Bänziger M, Pixley K, Vivek B, Labuschagne M, Matemba-Mutasa R, Burgenõ J, Macrobert J, Prasanna BM, Das B, Makumbi D, Tarekegne A, Crossa J, Zaman-Allah M, Cairns JE (2017b) Gains in maize genetic improvement in Eastern and Southern Africa (ii) CIMMYT open pollinated varieties (OPVs) breeding pipeline. Crop Sci 57:180–191CrossRefGoogle Scholar
  72. Menkir A, Maziya-Dixon B, Mengesha W, Rocheford T, Alamuet EO (2017) Accruing genetic gain in pro-vitamin a enrichment from harnessing diverse maize germplasm. Euphytica 213.
  73. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  74. Mihm JA (ed) (1997) Insect resistant maize: recent advances and utilization. In: Proceedings of an international symposium held at the international maize and wheat improvement center (CIMMYT), Nov 27–Dec 3 1994. CIMMYT, Mexico, D.FGoogle Scholar
  75. Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Jaffe DB et al (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87CrossRefGoogle Scholar
  76. Miller ND, Haase NJ, Lee J, Kaeppler SM, de Leon N, Spalding EP (2017) A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images. Plant J 89:169–178CrossRefGoogle Scholar
  77. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977CrossRefPubMedPubMedCentralGoogle Scholar
  78. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85CrossRefGoogle Scholar
  79. Muthusamy V, Hossain F, Nepolean T, Choudhary M, Saha S, Bhat JS, Prasanna BM, Gupta HS (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS ONE 9:1–22. Scholar
  80. Nair S, Babu R, Magorokosho C, Mahuku G, Semagn K, Beyene Y, Das B, Makumbi D, Kumar L, Olsen M, Prasanna BM (2015) Fine mapping of Msv1, a major QTL for resistance to maize streak virus leads to development of production markers for breeding pipelines. Theor Appl Genet 128:1839–1854CrossRefGoogle Scholar
  81. Olsen MS, Cairns JE, Gowda M, Chaikam V, Zaman-Allah M, Beyene Y, Nair SK, Gao SY, Bright JM, Burgueño J, Crossa J, Gedil MA, Ndhlela T, N’gan’ga M, Ogugo V, Ramu P, Robbins K, Suresh LM, Zhang X, Prasanna BM (2018) Accelerating maize breeding in the (sub)tropics - Innovative tools to reduce time and costs. Theor Appl Genet (Under Review)Google Scholar
  82. Prasanna BM, Araus JL, Crossa J, Cairns JE, Palacios N, Das B, Magorokosho C (2013) High throughput and precision phenotyping in cereal breeding programs. In: Gupta, PK Varshney RK (eds) Cereal Genomics, 2nd edn. Springer, BerlinGoogle Scholar
  83. Prasanna BM, Chaikam V, Mahuku G (2012) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico D.FGoogle Scholar
  84. Prasanna BM, Huesing JE, Eddy R, Peschke VM (eds) (2018) Fall Armyworm in Africa: A Guide for Integrated Pest Management, 1st edn. CIMMYT, Mexico, CDMXGoogle Scholar
  85. Prigge V, Sánchez C, Dhillon BS, Schipprack W, Araus JL et al (2011) Doubled haploids in tropical maize. I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci 51:1498–1506CrossRefGoogle Scholar
  86. Prigge V, Xu X, Li L, Babu R, Chen S, Atlin GN, Melchinger AE (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190:781–793CrossRefPubMedPubMedCentralGoogle Scholar
  87. Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111. Scholar
  88. Rashid Z, Singh PK, Hindu V, Zaidi PH (2018) Genome-wide association study in Asia-adapted tropical maize reveals novel and explored genomic regions for sorghum downy mildew resistance. Sci Rep 1–12.
  89. Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, Melchinger AE (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194:493–503CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sarika K, Hossain F, Muthusamy V, Zunjare RU, Baveja A, Goswami R, Thirunavukkarasu N, Jha SK, Gupta HS (2018) Opaque16, a high lysine and tryptophan mutant, does not influence the key physico-biochemical characteristics in maize kernel. PLoS ONE 13:1–14. Scholar
  91. Schmidt RJ, Burrt FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci USA 87:46–50CrossRefGoogle Scholar
  92. Shiferaw B, Prasanna B, Hellin J, Banziger M (2011) Crops that feed the world. 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327CrossRefGoogle Scholar
  93. Shiferaw B, Tesfaye K, Kassie M, Abate T, Prasanna BM, Menkir A (2014) Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: technological, institutional and policy options. Weather Clim Extrem 3:67–79CrossRefGoogle Scholar
  94. Smith C (1967) Improvement of metric traits through specific genetic loci. Anim Prod 9:349–358Google Scholar
  95. Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864CrossRefPubMedPubMedCentralGoogle Scholar
  96. Tao Y, Jiang L, Liu Q, Zhang Y, Zhang R, Ingvardsen CR, Xu M (2013) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13:162CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9866CrossRefGoogle Scholar
  98. Tesfaye K, Zaidi PH, Gbegbelegbe S, Boeber C, Rahut DB, Getaneh F, Seetharam K, Erenstein O, Stirling C (2017) Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theor Appl Clim 130:959–970CrossRefGoogle Scholar
  99. Tesfayea K, Kruseman G, Cairns JE, Zaman-Allah M, Wegary D, Zaidi PH, Bootee KJ, Rahut D, Erenstein O (2018) Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Clim Risk Manag 19:106–119CrossRefGoogle Scholar
  100. Vivek BS, Krishna GK, Vengadessan V, Babu R, Zaidi PH, Kha LQ, Mandal SS, Grudloyma P, Takalkar S, Krothapalli K, Singh IS, Ocampo ETM, Xingming F, Burgueño J, Azrai M, Singh RP, Crossa J (2017) Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome 10:0.
  101. Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M (2015) Exome sequencing: current and future perspectives. Genes Genomes Genet 5:1543–1550Google Scholar
  102. Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12959–12962CrossRefGoogle Scholar
  103. Wright SI (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314CrossRefGoogle Scholar
  104. Xiong X, Yu L, Yang WN, Liu M, Jiang N, Wu D, Chen G, Xiong L, Liu K, Liu Q (2017) A high throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Meth 13:17. Scholar
  105. Xu C, Ren Y, Jian Y, Guo Z, Zhang Y, Xie C, Fu J, Wang H, Wang G, Xu Y, Li P, Zou C (2017a) Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Mol Breed 37:20. Scholar
  106. Xu Y (2010) Molecular plant breeding. CAB International, Wallingford, p 734CrossRefGoogle Scholar
  107. Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666CrossRefGoogle Scholar
  108. Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q, Fernandez MG, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, Dellapenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat Genet 42:322–327CrossRefGoogle Scholar
  109. Yang L, Wang W, Yang W, Wang M (2013) Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes. Mol Breed 31:767–775CrossRefGoogle Scholar
  110. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zaidi PH, Seetharam K, Krishna G, Krishnamurthy L, Gajanan S, Babu R, Zerka M, Vinayan MT, Vivek BS (2016) Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). PLoS One. 11: e0164340.
  112. Zaman-Allah M, Vergara O, Araus JL, Tarekegne A, Magorokosho C, Zarco-Tejeda PJ, Hornero A, Hernandez Alba A, Das B, Craufurd P, Olsen M, Prasanna BM, Cairns JE (2015) Unmanned aerial platform-based multi-spectral imaging for field crop phenotyping in maize. Plant Meth 11:35CrossRefGoogle Scholar
  113. Zhang X, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin G, Prasanna BM, Vargas M, San Vicente F, Crossa J (2017) Rapid cycling genomic selection in a multiparental tropical maize population. Genes Genomes Genet 7:2315–2326Google Scholar
  114. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372CrossRefGoogle Scholar
  115. Zunjare RU, Hossain F, Muthusamy V, Baveja A, Chauhan HS, Bhat JS, Thirunavukkarasu N, Saha S, Gupta HS (2018) Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and opaque2 genes. Front Plant Sci. 9:1–12. Scholar
  116. Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA, Zhao J, Zhao X, Chen Y, Lai J, Yan J, Xu M (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • B. M. Prasanna
    • 1
    Email author
  • Sudha K. Nair
    • 2
  • Raman Babu
    • 3
  • Manje Gowda
    • 1
  • Xuecai Zhang
    • 4
  • Yunbi Xu
    • 5
  • Mike Olsen
    • 1
  • Vijay Chaikam
    • 1
  • Jill E. Cairns
    • 6
  • Mainassara Zaman-Allah
    • 6
  • Yoseph Beyene
    • 1
  • Amsal Tarekegne
    • 6
    • 7
  • Cosmos Magorokosho
    • 6
  1. 1.International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya
  2. 2.CIMMYT, ICRISAT CampusPatancheruIndia
  3. 3.Corteva Multi-Crop Research CenterHyderabadIndia
  4. 4.CIMMYTTexcocoMexico
  5. 5.CIMMYT-China, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
  6. 6.CIMMYTHarareZimbabwe
  7. 7.ZamseedLusakaZambia

Personalised recommendations