Advertisement

Social Cyber-Security

  • Kathleen M. CarleyEmail author
  • Guido Cervone
  • Nitin Agarwal
  • Huan Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10899)

Abstract

Social Cyber-Security is an emerging scientific discipline. Its methodological and scientific foundation, key challenges, and scientific direction are described. The multi-disciplinary nature of this field and its emphasis on dynamic information strategies is considered.

Keywords

Social cyber-security Network science Social media analytics 

References

  1. 1.
    Reveron, D.S.: Cyberspace and National Security: Threats, Opportunities, and Power in A Virtual World. Georgetown University Press, Washington D.C. (2012)Google Scholar
  2. 2.
    Gass, R.H., Seiter, J.S.: Persuasion: Social Influence and Compliance Gaining. Routledge, UK (2015)Google Scholar
  3. 3.
    Benigni, M., Joseph, K., Carley, K.M.: Online extremism and the communities that sustain it: detecting the ISIS supporting community on Twitter. PLoS ONE 12(12), e0181405 (2017)CrossRefGoogle Scholar
  4. 4.
    Sunstein, C.R.: #Republic: Divided democracy in the age of social media. Princeton University Press, Princeton (2018)Google Scholar
  5. 5.
    Bennett, W.L.: The personalization of politics: political identity, social media, and changing patterns of participation. Ann. Am. Acad. Polit. Soc. Sci. 644(1), 20–39 (2012)CrossRefGoogle Scholar
  6. 6.
    Wu, L., Liu, H.: Tracing fake-news footprints: characterizing social media messages by how they propagate. In: The Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM2018), pp. 637–645. ACM, NY (2018)Google Scholar
  7. 7.
    Colliander, J., Dahlén, M.: Following the fashionable friend: the power of social media: weighing publicity effectiveness of blogs versus online magazines. J. Advert. Res. 51(1), 313–320 (2011)CrossRefGoogle Scholar
  8. 8.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54. ACM, NY (2006)Google Scholar
  9. 9.
    Joseph, K., Wei, W., Benigni, M., Carley, K.M.: A social-event based approach to sentiment analysis of identities and behaviors in text. J. Math. Sociol. 40(3), 137–166 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Benigni, M., Joseph, K., Carley, K.M.: Mining online communities to inform strategic messaging: practical methods to identify community-level insights. Comput. Math. Organ. Theor. 24, 224–242 (2017)CrossRefGoogle Scholar
  11. 11.
    Cordesman, A.H., Cordesman, J.G.: Cyber-Threats, Information Warfare, and Critical Infrastructure Protection: Defending The US Homeland. Greenwood Publishing Group, Westport (2002)Google Scholar
  12. 12.
    Al-khateeb, S., Hussain, M.N., Agarwal, N.: Social cyber forensics approach to study twitter’s and blogs’ influence on propaganda campaigns. In: Lee, D., Lin, Y.-R., Osgood, N., Thomson, R. (eds.) SBP-BRiMS 2017. LNCS, vol. 10354, pp. 108–113. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60240-0_13CrossRefGoogle Scholar
  13. 13.
    Entman, R.M.: Framing bias: media in the distribution of power. J. Commun. 57(1), 163–173 (2007)CrossRefGoogle Scholar
  14. 14.
    Benigni, M., Carley, K.M.: From tweets to intelligence: understanding the islamic jihad supporting community on Twitter. In: Xu, K., Reitter, D., Lee, D., Osgood, N. (eds.) SBP-BRiMS 2016. Lecture Notes in Computer Science, vol. 9708, pp. 346–355. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39931-7_33CrossRefGoogle Scholar
  15. 15.
    Carley, K.M., Wei, W., Joseph, K.: High dimensional network analytics: mapping topic networks in twitter data during the Arab spring. In: Cui, S., Hero, A., Luo, Z.-Q., Moura, J. (eds.) Big Data Over Networks. Cambridge University Press, Boston (2016)Google Scholar
  16. 16.
    Hu, X., Liu, H.: Text Analytics in Social Media. In: Aggarwal, C., Zhai, C. (eds.) Mining text data, pp. 385–414. Springer, Boston (2012).  https://doi.org/10.1007/978-1-4614-3223-4_12CrossRefGoogle Scholar
  17. 17.
    Agarwal, N., Kumar, S., Gao, H., Zafarani, R., Liu, H.: Analyzing behavior of the influentials across social media. In: Cao, L., Yu, P. (eds.) Behavior Computing, pp. 3–19. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-2969-1_1CrossRefGoogle Scholar
  18. 18.
    Cervone, G., Sava, E., Huang, Q., Schnebele, E., Harrison, J., Waters, N.: Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study. Int. J. Remote Sens. 37(1), 100–124 (2016)CrossRefGoogle Scholar
  19. 19.
    Wei, W., Joseph, K., Liu, H., Carley, K.M.: Exploring characteristics of suspended users and network stability on Twitter. Soc. Netw. Anal. Min. 6(1), 51 (2016)CrossRefGoogle Scholar
  20. 20.
    Carley, K.M., Momin, M., Landwehr, P.M., Pfeffer, J., Kowalchuck, M.: Crowd sourcing disaster management: the complex nature of Twitter usage in Padang Indonesia. Saf. Sci. 90, 48–61 (2016)CrossRefGoogle Scholar
  21. 21.
    Morstatter, F., Pfeffer, J., Liu, H. Carley, K.M.: Is the sample good enough? Comparing data (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Pennsylvania State UniversityState CollegeUSA
  3. 3.University of Arkansas Little RockLittle RockUSA
  4. 4.Arizona State UniversityTempeUSA

Personalised recommendations