Molecular Prognostication in Bladder Cancer

  • Anirban P. MitraEmail author
  • Siamak Daneshmand
Part of the Cancer Treatment and Research book series (CTAR, volume 175)


Clinical outcomes for patients with bladder cancer have largely remained unchanged over the last three decades despite improvements in surgical techniques, perioperative therapies, and postoperative management. Current management still heavily relies on pathologic staging that does not always reflect an individual patient’s risk. The genesis and progression of bladder cancer is now increasingly recognized as being a result of alterations in several pathways that affect the cell cycle, apoptosis, cellular signaling, gene regulation, immune modulation, angiogenesis, and tumor cell invasion. Multiplexed assessment of biomarkers associated with alterations in these pathways offers novel insights into tumor behavior while identifying panels that are capable of reproducibly predicting patient outcomes. Future management of bladder cancer will likely incorporate such prognostic molecular models for risk stratification and treatment personalization.


Urinary bladder neoplasms Cellular pathways Immunohistochemistry Expression profiling Multimarker analysis Prognosis Risk stratification Therapeutic targeting 


Funding Acknowledgement

This research was not sponsored by any funding agency in the public, commercial, or not-for-profit sectors.


  1. 1.
    Daneshmand S, Patel S, Lotan Y et al (2018) Efficacy and safety of blue light flexible cystoscopy with hexaminolevulinate (HAL) in the surveillance of bladder cancer: a phase III, comparative, multi-center study. J Urol 199:1158Google Scholar
  2. 2.
    Zlatev DV, Altobelli E, Liao JC (2015) Advances in imaging technologies in the evaluation of high-grade bladder cancer. Urol Clin North Am 42:147PubMedPubMedCentralGoogle Scholar
  3. 3.
    Birkhahn M, Mitra AP, Williams AJ et al (2013) A novel precision-engineered microfiltration device for capture and characterisation of bladder cancer cells in urine. Eur J Cancer 49:3159PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mitra AP, Cote RJ (2010) Molecular screening for bladder cancer: progress and potential. Nat Rev Urol 7:11PubMedGoogle Scholar
  5. 5.
    Advanced Bladder Cancer (ABC) Meta-analysis Collaboration (2005) Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data. Eur Urol 48:202Google Scholar
  6. 6.
    Daneshmand S, Ahmadi H, Schuckman AK et al (2014) Enhanced recovery protocol after radical cystectomy for bladder cancer. J Urol 192:50PubMedGoogle Scholar
  7. 7.
    Zehnder P, Studer UE, Skinner EC et al (2013) Unaltered oncological outcomes of radical cystectomy with extended lymphadenectomy over three decades. BJU Int 112:E51PubMedGoogle Scholar
  8. 8.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7Google Scholar
  9. 9.
    Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87PubMedPubMedCentralGoogle Scholar
  10. 10.
    Mitra AP, Bartsch G, Cote RJ (2018) Risk factors and molecular features associated with bladder cancer development. In: Hansel DE, Lerner SP (eds) Precision molecular pathology of bladder cancer. Springer Nature, Cham, Switzerland, pp 3–28Google Scholar
  11. 11.
    Mitra AP (2016) Molecular substratification of bladder cancer: moving towards individualized patient management. Ther Adv Urol 8:215PubMedPubMedCentralGoogle Scholar
  12. 12.
    Mitra AP, Jordà M, Cote RJ (2012) Pathological possibilities and pitfalls in detecting aggressive bladder cancer. Curr Opin Urol 22:397PubMedGoogle Scholar
  13. 13.
    Zehnder P, Moltzahn F, Daneshmand S et al (2014) Outcome in patients with exclusive carcinoma in situ (CIS) after radical cystectomy. BJU Int 113:65PubMedGoogle Scholar
  14. 14.
    Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713PubMedGoogle Scholar
  15. 15.
    Knowles MA (2006) Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis 27:361PubMedGoogle Scholar
  16. 16.
    Rieger-Christ KM, Mourtzinos A, Lee PJ et al (2003) Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection. Cancer 98:737PubMedGoogle Scholar
  17. 17.
    van Rhijn BW, van der Kwast TH, Vis AN et al (2004) FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res 64:1911PubMedGoogle Scholar
  18. 18.
    Bakkar AA, Wallerand H, Radvanyi F et al (2003) FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 63:8108PubMedGoogle Scholar
  19. 19.
    Orlow I, LaRue H, Osman I et al (1999) Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence. Am J Pathol 155:105PubMedGoogle Scholar
  20. 20.
    Mitra AP, Datar RH, Cote RJ (2006) Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol 24:5552PubMedGoogle Scholar
  21. 21.
    Spruck CH III, Ohneseit PF, Gonzalez-Zulueta M et al (1994) Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 54:784PubMedGoogle Scholar
  22. 22.
    Hartmann A, Schlake G, Zaak D et al (2002) Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder. Cancer Res 62:809PubMedGoogle Scholar
  23. 23.
    Korkolopoulou P, Christodoulou P, Lazaris A et al (2001) Prognostic implications of aberrations in p16/pRb pathway in urothelial bladder carcinomas: a multivariate analysis including p53 expression and proliferation markers. Eur Urol 39:167PubMedGoogle Scholar
  24. 24.
    Mitra AP, Quinn DI, Dorff TB et al (2012) Factors influencing post-recurrence survival in bladder cancer following radical cystectomy. BJU Int 109:846PubMedGoogle Scholar
  25. 25.
    The Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315Google Scholar
  26. 26.
    Nordentoft I, Lamy P, Birkenkamp-Demtröder K et al (2014) Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep 7:1649PubMedGoogle Scholar
  27. 27.
    Mitra AP, Cote RJ (2009) Molecular pathogenesis and diagnostics of bladder cancer. Annu Rev Pathol 4:251PubMedGoogle Scholar
  28. 28.
    Mitra AP, Cote RJ (2007) Searching for novel therapeutics and targets: insights from clinical trials. Urol Oncol 25:341PubMedGoogle Scholar
  29. 29.
    Youssef RF, Mitra AP, Bartsch G Jr et al (2009) Molecular targets and targeted therapies in bladder cancer management. World J Urol 27:9PubMedGoogle Scholar
  30. 30.
    Mitra AP, Hansel DE, Cote RJ (2012) Prognostic value of cell-cycle regulation biomarkers in bladder cancer. Semin Oncol 39:524PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mitra AP, Birkhahn M, Cote RJ (2007) p53 and retinoblastoma pathways in bladder cancer. World J Urol 25:563PubMedGoogle Scholar
  32. 32.
    Mitra AP, Datar RH, Cote RJ (2005) Molecular staging of bladder cancer. BJU Int 96:7PubMedGoogle Scholar
  33. 33.
    Mitra AP, Lin H, Cote RJ et al (2005) Biomarker profiling for cancer diagnosis, prognosis and therapeutic management. Natl Med J India 18:304PubMedGoogle Scholar
  34. 34.
    Esrig D, Elmajian D, Groshen S et al (1994) Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 331:1259PubMedGoogle Scholar
  35. 35.
    Sarkis AS, Dalbagni G, Cordon-Cardo C et al (1993) Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J Natl Cancer Inst 85:53PubMedGoogle Scholar
  36. 36.
    Serth J, Kuczyk MA, Bokemeyer C et al (1995) p53 immunohistochemistry as an independent prognostic factor for superficial transitional cell carcinoma of the bladder. Br J Cancer 71:201PubMedPubMedCentralGoogle Scholar
  37. 37.
    Chatterjee SJ, Datar R, Youssefzadeh D et al (2004) Combined effects of p53, p21, and pRb expression in the progression of bladder transitional cell carcinoma. J Clin Oncol 22:1007PubMedGoogle Scholar
  38. 38.
    Shariat SF, Tokunaga H, Zhou J et al (2004) p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J Clin Oncol 22:1014PubMedGoogle Scholar
  39. 39.
    Shariat SF, Lotan Y, Karakiewicz PI et al (2009) p53 predictive value for pT1-2 N0 disease at radical cystectomy. J Urol 182:907PubMedGoogle Scholar
  40. 40.
    Shariat SF, Zlotta AR, Ashfaq R et al (2007) Cooperative effect of cell-cycle regulators expression on bladder cancer development and biologic aggressiveness. Mod Pathol 20:445PubMedGoogle Scholar
  41. 41.
    Shariat SF, Bolenz C, Karakiewicz PI et al (2010) p53 expression in patients with advanced urothelial cancer of the urinary bladder. BJU Int 105:489PubMedGoogle Scholar
  42. 42.
    Shariat SF, Chade DC, Karakiewicz PI et al (2010) Combination of multiple molecular markers can improve prognostication in patients with locally advanced and lymph node positive bladder cancer. J Urol 183:68PubMedGoogle Scholar
  43. 43.
    George B, Datar RH, Wu L et al (2007) p53 gene and protein status: The role of p53 alterations in predicting outcome in patients with bladder cancer. J Clin Oncol 25:5352PubMedGoogle Scholar
  44. 44.
    Malats N, Bustos A, Nascimento CM et al (2005) P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncol 6:678PubMedGoogle Scholar
  45. 45.
    Stadler WM, Lerner SP, Groshen S et al (2011) Phase III study of molecularly targeted adjuvant therapy in locally advanced urothelial cancer of the bladder based on p53 status. J Clin Oncol 29:3443PubMedPubMedCentralGoogle Scholar
  46. 46.
    Stein JP, Ginsberg DA, Grossfeld GD et al (1998) Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 90:1072PubMedGoogle Scholar
  47. 47.
    Simon R, Struckmann K, Schraml P et al (2002) Amplification pattern of 12q13-q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 21:2476PubMedGoogle Scholar
  48. 48.
    Bates S, Phillips AC, Clark PA et al (1998) p14ARF links the tumour suppressors RB and p53. Nature 395:124PubMedGoogle Scholar
  49. 49.
    Rebouissou S, Herault A, Letouze E et al (2012) CDKN2A homozygous deletion is associated with muscle invasion in FGFR3-mutated urothelial bladder carcinoma. J Pathol 227:315PubMedGoogle Scholar
  50. 50.
    Miyamoto H, Shuin T, Torigoe S et al (1995) Retinoblastoma gene mutations in primary human bladder cancer. Br J Cancer 71:831PubMedPubMedCentralGoogle Scholar
  51. 51.
    Kapur P, Lotan Y, King E et al (2011) Primary adenocarcinoma of the urinary bladder: value of cell cycle biomarkers. Am J Clin Pathol 135:822PubMedGoogle Scholar
  52. 52.
    Kamai T, Takagi K, Asami H et al (2001) Decreasing of p27Kip1 and cyclin E protein levels is associated with progression from superficial into invasive bladder cancer. Br J Cancer 84:1242PubMedPubMedCentralGoogle Scholar
  53. 53.
    Shariat SF, Bolenz C, Godoy G et al (2009) Predictive value of combined immunohistochemical markers in patients with pT1 urothelial carcinoma at radical cystectomy. J Urol 182:78PubMedGoogle Scholar
  54. 54.
    Shariat SF, Karakiewicz PI, Ashfaq R et al (2008) Multiple biomarkers improve prediction of bladder cancer recurrence and mortality in patients undergoing cystectomy. Cancer 112:315PubMedGoogle Scholar
  55. 55.
    Shariat SF, Chromecki TF, Cha EK et al (2012) Risk stratification of organ confined bladder cancer after radical cystectomy using cell cycle related biomarkers. J Urol 187:457PubMedGoogle Scholar
  56. 56.
    Koga S, Hirohata S, Kondo Y et al (2000) A novel telomerase-specific gene therapy: gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther 11:1397PubMedGoogle Scholar
  57. 57.
    Karam JA, Lotan Y, Karakiewicz PI et al (2007) Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol 8:128PubMedGoogle Scholar
  58. 58.
    Shariat SF, Ashfaq R, Karakiewicz PI et al (2007) Survivin expression is associated with bladder cancer presence, stage, progression, and mortality. Cancer 109:1106PubMedGoogle Scholar
  59. 59.
    Shariat SF, Karakiewicz PI, Godoy G et al (2009) Survivin as a prognostic marker for urothelial carcinoma of the bladder: a multicenter external validation study. Clin Cancer Res 15:7012PubMedGoogle Scholar
  60. 60.
    Ong F, Moonen LM, Gallee MP et al (2001) Prognostic factors in transitional cell cancer of the bladder: an emerging role for Bcl-2 and p53. Radiother Oncol 61:169PubMedGoogle Scholar
  61. 61.
    Hussain SA, Ganesan R, Hiller L et al (2003) BCL2 expression predicts survival in patients receiving synchronous chemoradiotherapy in advanced transitional cell carcinoma of the bladder. Oncol Rep 10:571PubMedGoogle Scholar
  62. 62.
    Cooke PW, James ND, Ganesan R et al (2000) Bcl-2 expression identifies patients with advanced bladder cancer treated by radiotherapy who benefit from neoadjuvant chemotherapy. BJU Int 85:829PubMedGoogle Scholar
  63. 63.
    Kong G, Shin KY, Oh YH et al (1998) Bcl-2 and p53 expressions in invasive bladder cancers. Acta Oncol 37:715PubMedGoogle Scholar
  64. 64.
    Wolf HK, Stober C, Hohenfellner R et al (2001) Prognostic value of p53, p21/WAF1, Bcl-2, Bax, Bak and Ki-67 immunoreactivity in pT1 G3 urothelial bladder carcinomas. Tumour Biol 22:328PubMedGoogle Scholar
  65. 65.
    Gonzalez-Campora R, Davalos-Casanova G, Beato-Moreno A et al (2007) BCL-2, TP53 and BAX protein expression in superficial urothelial bladder carcinoma. Cancer Lett 250:292PubMedGoogle Scholar
  66. 66.
    Maluf FC, Cordon-Cardo C, Verbel DA et al (2006) Assessing interactions between mdm-2, p53, and bcl-2 as prognostic variables in muscle-invasive bladder cancer treated with neo-adjuvant chemotherapy followed by locoregional surgical treatment. Ann Oncol 17:1677PubMedGoogle Scholar
  67. 67.
    Giannopoulou I, Nakopoulou L, Zervas A et al (2002) Immunohistochemical study of pro-apoptotic factors Bax, Fas and CPP32 in urinary bladder cancer: prognostic implications. Urol Res 30:342PubMedGoogle Scholar
  68. 68.
    Korkolopoulou P, Lazaris A, Konstantinidou AE et al (2002) Differential expression of bcl-2 family proteins in bladder carcinomas. Relationship with apoptotic rate and survival. Eur Urol 41:274PubMedGoogle Scholar
  69. 69.
    Mitra AP, Lin H, Datar RH et al (2006) Molecular biology of bladder cancer: prognostic and clinical implications. Clin Genitourin Cancer 5:67PubMedGoogle Scholar
  70. 70.
    Mitra AP, Castelao JE, Hawes D et al (2013) Combination of molecular alterations and smoking intensity predicts bladder cancer outcome: a report from the Los Angeles Cancer Surveillance Program. Cancer 119:756PubMedPubMedCentralGoogle Scholar
  71. 71.
    Pasin E, Josephson DY, Mitra AP et al (2008) Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol 10:31PubMedPubMedCentralGoogle Scholar
  72. 72.
    van Rhijn BW, Zuiverloon TC, Vis AN et al (2010) Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer. Eur Urol 58:433PubMedGoogle Scholar
  73. 73.
    Jebar AH, Hurst CD, Tomlinson DC et al (2005) FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24:5218PubMedGoogle Scholar
  74. 74.
    Birkhahn M, Mitra AP, Williams AJ et al (2010) Predicting recurrence and progression of noninvasive papillary bladder cancer at initial presentation based on quantitative gene expression profiles. Eur Urol 57:12PubMedGoogle Scholar
  75. 75.
    Wright C, Mellon K, Johnston P et al (1991) Expression of mutant p53, c-erbB-2 and the epidermal growth factor receptor in transitional cell carcinoma of the human urinary bladder. Br J Cancer 63:967PubMedPubMedCentralGoogle Scholar
  76. 76.
    Korkolopoulou P, Christodoulou P, Kapralos P et al (1997) The role of p53, MDM2 and c-erb B-2 oncoproteins, epidermal growth factor receptor and proliferation markers in the prognosis of urinary bladder cancer. Pathol Res Pract 193:767PubMedGoogle Scholar
  77. 77.
    Mellon JK, Lunec J, Wright C et al (1996) c-erbB-2 in bladder cancer: Molecular biology, correlation with epidermal growth factor receptors and prognostic value. J Urol 155:321PubMedGoogle Scholar
  78. 78.
    Liukkonen T, Rajala P, Raitanen M et al (1999) Prognostic value of MIB-1 score, p53, EGFr, mitotic index and papillary status in primary superficial (Stage pTa/T1) bladder cancer: a prospective comparative study. Eur Urol 36:393PubMedGoogle Scholar
  79. 79.
    Kramer C, Klasmeyer K, Bojar H et al (2007) Heparin-binding epidermal growth factor-like growth factor isoforms and epidermal growth factor receptor/ErbB1 expression in bladder cancer and their relation to clinical outcome. Cancer 109:2016PubMedGoogle Scholar
  80. 80.
    Lipponen P, Eskelinen M (1994) Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br J Cancer 69:1120PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kruger S, Weitsch G, Buttner H et al (2002) Overexpression of c-erbB-2 oncoprotein in muscle-invasive bladder carcinoma: relationship with gene amplification, clinicopathological parameters and prognostic outcome. Int J Oncol 21:981PubMedGoogle Scholar
  82. 82.
    Kruger S, Weitsch G, Buttner H et al (2002) HER2 overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic implications. Int J Cancer 102:514PubMedGoogle Scholar
  83. 83.
    Bolenz C, Shariat SF, Karakiewicz PI et al (2010) Human epidermal growth factor receptor 2 expression status provides independent prognostic information in patients with urothelial carcinoma of the urinary bladder. BJU Int 106:1216PubMedGoogle Scholar
  84. 84.
    Kassouf W, Black PC, Tuziak T et al (2008) Distinctive expression pattern of ErbB family receptors signifies an aggressive variant of bladder cancer. J Urol 179:353PubMedGoogle Scholar
  85. 85.
    Jimenez RE, Hussain M, Bianco FJ Jr et al (2001) Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clin Cancer Res 7:2440PubMedGoogle Scholar
  86. 86.
    Chow NH, Chan SH, Tzai TS et al (2001) Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clin Cancer Res 7:1957PubMedGoogle Scholar
  87. 87.
    Memon AA, Sorensen BS, Meldgaard P et al (2006) The relation between survival and expression of HER1 and HER2 depends on the expression of HER3 and HER4: a study in bladder cancer patients. Br J Cancer 94:1703PubMedPubMedCentralGoogle Scholar
  88. 88.
    Mitra AP, Skinner EC, Schuckman AK et al (2014) Effect of gender on outcomes following radical cystectomy for urothelial carcinoma of the bladder: a critical analysis of 1,994 patients. Urol Oncol 32:52.e1Google Scholar
  89. 89.
    Tuygun C, Kankaya D, Imamoglu A et al (2011) Sex-specific hormone receptors in urothelial carcinomas of the human urinary bladder: a comparative analysis of clinicopathological features and survival outcomes according to receptor expression. Urol Oncol 29:43PubMedGoogle Scholar
  90. 90.
    Ide H, Inoue S, Miyamoto H (2017) Histopathological and prognostic significance of the expression of sex hormone receptors in bladder cancer: a meta-analysis of immunohistochemical studies. PLoS ONE 12:e0174746PubMedPubMedCentralGoogle Scholar
  91. 91.
    Boorjian S, Ugras S, Mongan NP et al (2004) Androgen receptor expression is inversely correlated with pathologic tumor stage in bladder cancer. Urology 64:383PubMedGoogle Scholar
  92. 92.
    Mir C, Shariat SF, van der Kwast TH et al (2011) Loss of androgen receptor expression is not associated with pathological stage, grade, gender or outcome in bladder cancer: a large multi-institutional study. BJU Int 108:24PubMedGoogle Scholar
  93. 93.
    Stephanou A, Brar BK, Knight RA et al (2000) Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ 7:329PubMedGoogle Scholar
  94. 94.
    Mitra AP, Pagliarulo V, Yang D et al (2009) Generation of a concise gene panel for outcome prediction in urinary bladder cancer. J Clin Oncol 27:3929PubMedPubMedCentralGoogle Scholar
  95. 95.
    Choudhury A, Nelson LD, Teo MT et al (2010) MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res 70:7017PubMedPubMedCentralGoogle Scholar
  96. 96.
    Laurberg JR, Brems-Eskildsen AS, Nordentoft I et al (2012) Expression of TIP60 (tat-interactive protein) and MRE11 (meiotic recombination 11 homolog) predict treatment-specific outcome of localised invasive bladder cancer. BJU Int 110:E1228PubMedGoogle Scholar
  97. 97.
    Martin RM, Kerr M, Teo MT et al (2014) Post-transcriptional regulation of MRE11 expression in muscle-invasive bladder tumours. Oncotarget 5:993PubMedPubMedCentralGoogle Scholar
  98. 98.
    Teo MT, Dyrskjøt L, Nsengimana J et al (2014) Next-generation sequencing identifies germline MRE11A variants as markers of radiotherapy outcomes in muscle-invasive bladder cancer. Ann Oncol 25:877PubMedPubMedCentralGoogle Scholar
  99. 99.
    Desai NB, Scott SN, Zabor EC et al (2016) Genomic characterization of response to chemoradiation in urothelial bladder cancer. Cancer 122:3715PubMedGoogle Scholar
  100. 100.
    Andrews B, Shariat SF, Kim JH et al (2002) Preoperative plasma levels of interleukin-6 and its soluble receptor predict disease recurrence and survival of patients with bladder cancer. J Urol 167:1475PubMedGoogle Scholar
  101. 101.
    Chen FH, Crist SA, Zhang GJ et al (2002) Interleukin-6 production by human bladder tumor cell lines is up-regulated by bacillus Calmette-Guerin through nuclear factor-kappaB and Ap-1 via an immediate early pathway. J Urol 168:786PubMedGoogle Scholar
  102. 102.
    Riemann K, Becker L, Struwe H et al (2007) Insertion/deletion polymorphism in the promoter of NFKB1 as a potential molecular marker for the risk of recurrence in superficial bladder cancer. Int J Clin Pharmacol Ther 45:423PubMedGoogle Scholar
  103. 103.
    Bartsch G Jr, Mitra AP, Mitra SA et al (2016) Use of artificial intelligence and machine learning algorithms with gene expression profiling to predict recurrent nonmuscle invasive urothelial carcinoma of the bladder. J Urol 195:493PubMedGoogle Scholar
  104. 104.
    Masson-Lecomte A, Rava M, Real FX et al (2014) Inflammatory biomarkers and bladder cancer prognosis: a systematic review. Eur Urol 66:1078PubMedGoogle Scholar
  105. 105.
    Hilmy M, Campbell R, Bartlett JM et al (2006) The relationship between the systemic inflammatory response, tumour proliferative activity, T-lymphocytic infiltration and COX-2 expression and survival in patients with transitional cell carcinoma of the urinary bladder. Br J Cancer 95:1234PubMedPubMedCentralGoogle Scholar
  106. 106.
    Gakis G, Todenhöfer T, Renninger M et al (2011) Development of a new outcome prediction model in carcinoma invading the bladder based on preoperative serum C-reactive protein and standard pathological risk factors: the TNR-C score. BJU Int 108:1800PubMedGoogle Scholar
  107. 107.
    Yoshida S, Saito K, Koga F et al (2008) C-reactive protein level predicts prognosis in patients with muscle-invasive bladder cancer treated with chemoradiotherapy. BJU Int 101:978PubMedGoogle Scholar
  108. 108.
    Ishioka J, Saito K, Sakura M et al (2012) Development of a nomogram incorporating serum C-reactive protein level to predict overall survival of patients with advanced urothelial carcinoma and its evaluation by decision curve analysis. Br J Cancer 107:1031PubMedPubMedCentralGoogle Scholar
  109. 109.
    Nakagawa T, Hara T, Kawahara T et al (2013) Prognostic risk stratification of patients with urothelial carcinoma of the bladder with recurrence after radical cystectomy. J Urol 189:1275PubMedGoogle Scholar
  110. 110.
    Bochner BH, Cote RJ, Weidner N et al (1995) Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis. J Natl Cancer Inst 87:1603PubMedGoogle Scholar
  111. 111.
    Bochner BH, Esrig D, Groshen S et al (1997) Relationship of tumor angiogenesis and nuclear p53 accumulation in invasive bladder cancer. Clin Cancer Res 3:1615PubMedGoogle Scholar
  112. 112.
    Jaeger TM, Weidner N, Chew K et al (1995) Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer. J Urol 154:69PubMedGoogle Scholar
  113. 113.
    Shariat SF, Youssef RF, Gupta A et al (2010) Association of angiogenesis related markers with bladder cancer outcomes and other molecular markers. J Urol 183:1744PubMedGoogle Scholar
  114. 114.
    Crew JP, O’Brien T, Bradburn M et al (1997) Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer. Cancer Res 57:5281PubMedGoogle Scholar
  115. 115.
    Bernardini S, Fauconnet S, Chabannes E et al (2001) Serum levels of vascular endothelial growth factor as a prognostic factor in bladder cancer. J Urol 166:1275PubMedGoogle Scholar
  116. 116.
    Zu X, Tang Z, Li Y et al (2006) Vascular endothelial growth factor-C expression in bladder transitional cell cancer and its relationship to lymph node metastasis. BJU Int 98:1090PubMedGoogle Scholar
  117. 117.
    Herrmann E, Eltze E, Bierer S et al (2007) VEGF-C, VEGF-D and Flt-4 in transitional bladder cancer: relationships to clinicopathological parameters and long-term survival. Anticancer Res 27:3127PubMedGoogle Scholar
  118. 118.
    Xia G, Kumar SR, Hawes D et al (2006) Expression and significance of vascular endothelial growth factor receptor 2 in bladder cancer. J Urol 175:1245PubMedGoogle Scholar
  119. 119.
    Mitra AP, Almal AA, George B et al (2006) The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer. BMC Cancer 6:159PubMedPubMedCentralGoogle Scholar
  120. 120.
    Shariat SF, Monoski MA, Andrews B et al (2003) Association of plasma urokinase-type plasminogen activator and its receptor with clinical outcome in patients undergoing radical cystectomy for transitional cell carcinoma of the bladder. Urology 61:1053PubMedGoogle Scholar
  121. 121.
    Nguyen M, Watanabe H, Budson AE et al (1993) Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J Natl Cancer Inst 85:241PubMedGoogle Scholar
  122. 122.
    Gazzaniga P, Gandini O, Gradilone A et al (1999) Detection of basic fibroblast growth factor mRNA in urinary bladder cancer: correlation with local relapses. Int J Oncol 14:1123PubMedGoogle Scholar
  123. 123.
    Chopin DK, Caruelle JP, Colombel M et al (1993) Increased immunodetection of acidic fibroblast growth factor in bladder cancer, detectable in urine. J Urol 150:1126PubMedGoogle Scholar
  124. 124.
    Grossfeld GD, Ginsberg DA, Stein JP et al (1997) Thrombospondin-1 expression in bladder cancer: Association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst 89:219PubMedGoogle Scholar
  125. 125.
    Mahnken A, Kausch I, Feller AC et al (2005) E-cadherin immunoreactivity correlates with recurrence and progression of minimally invasive transitional cell carcinomas of the urinary bladder. Oncol Rep 14:1065PubMedGoogle Scholar
  126. 126.
    Mhawech-Fauceglia P, Fischer G, Beck A et al (2006) Raf1, Aurora-A/STK15 and E-cadherin biomarkers expression in patients with pTa/pT1 urothelial bladder carcinoma; a retrospective TMA study of 246 patients with long-term follow-up. Eur J Surg Oncol 32:439PubMedGoogle Scholar
  127. 127.
    Byrne RR, Shariat SF, Brown R et al (2001) E-cadherin immunostaining of bladder transitional cell carcinoma, carcinoma in situ and lymph node metastases with long-term followup. J Urol 165:1473PubMedGoogle Scholar
  128. 128.
    Bringuier PP, Umbas R, Schaafsma HE et al (1993) Decreased E-cadherin immunoreactivity correlates with poor survival in patients with bladder tumors. Cancer Res 53:3241PubMedGoogle Scholar
  129. 129.
    Seiler R, Lam LL, Erho N et al (2016) Prediction of lymph node metastasis in patients with bladder cancer using whole transcriptome gene expression signatures. J Urol 196:1036PubMedGoogle Scholar
  130. 130.
    O’Brien T, Cranston D, Fuggle S et al (1995) Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 55:510PubMedGoogle Scholar
  131. 131.
    O’Brien TS, Fox SB, Dickinson AJ et al (1996) Expression of the angiogenic factor thymidine phosphorylase/platelet-derived endothelial cell growth factor in primary bladder cancers. Cancer Res 56:4799PubMedGoogle Scholar
  132. 132.
    Aoki S, Yamada Y, Nakamura K et al (2006) Thymidine phosphorylase expression as a prognostic marker for predicting recurrence in primary superficial bladder cancer. Oncol Rep 16:279PubMedGoogle Scholar
  133. 133.
    Nonomura N, Nakai Y, Nakayama M et al (2006) The expression of thymidine phosphorylase is a prognostic predictor for the intravesical recurrence of superficial bladder cancer. Int J Clin Oncol 11:297PubMedGoogle Scholar
  134. 134.
    Davies B, Waxman J, Wasan H et al (1993) Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Res 53:5365PubMedGoogle Scholar
  135. 135.
    Gerhards S, Jung K, Koenig F et al (2001) Excretion of matrix metalloproteinases 2 and 9 in urine is associated with a high stage and grade of bladder carcinoma. Urology 57:675PubMedGoogle Scholar
  136. 136.
    Vasala K, Paakko P, Turpeenniemi-Hujanen T (2003) Matrix metalloproteinase-2 immunoreactive protein as a prognostic marker in bladder cancer. Urology 62:952PubMedGoogle Scholar
  137. 137.
    Slaton JW, Millikan R, Inoue K et al (2004) Correlation of metastasis related gene expression and relapse-free survival in patients with locally advanced bladder cancer treated with cystectomy and chemotherapy. J Urol 171:570PubMedGoogle Scholar
  138. 138.
    Guan KP, Ye HY, Yan Z et al (2003) Serum levels of endostatin and matrix metalloproteinase-9 associated with high stage and grade primary transitional cell carcinoma of the bladder. Urology 61:719PubMedGoogle Scholar
  139. 139.
    Szarvas T, Becker M, vom Dorp F et al (2010) Matrix metalloproteinase-7 as a marker of metastasis and predictor of poor survival in bladder cancer. Cancer Sci 101:1300PubMedGoogle Scholar
  140. 140.
    Szarvas T, Jäger T, Becker M et al (2011) Validation of circulating MMP-7 level as an independent prognostic marker of poor survival in urinary bladder cancer. Pathol Oncol Res 17:325PubMedGoogle Scholar
  141. 141.
    Roche Y, Pasquier D, Rambeaud JJ et al (2003) Fibrinogen mediates bladder cancer cell migration in an ICAM-1-dependent pathway. Thromb Haemost 89:1089PubMedGoogle Scholar
  142. 142.
    Ozer G, Altinel M, Kocak B et al (2003) Potential value of soluble intercellular adhesion molecule-1 in the serum of patients with bladder cancer. Urol Int 70:167PubMedGoogle Scholar
  143. 143.
    Mitra AP, Cote RJ (2011) Molecular signatures that predict nodal metastasis in bladder cancer: does the primary tumor tell tales? Expert Rev Anticancer Ther 11:849PubMedGoogle Scholar
  144. 144.
    Liebert M, Washington R, Wedemeyer G et al (1994) Loss of co-localization of a6b4 integrin and collagen VII in bladder cancer. Am J Pathol 144:787PubMedPubMedCentralGoogle Scholar
  145. 145.
    Grossman HB, Lee C, Bromberg J et al (2000) Expression of the a6b4 integrin provides prognostic information in bladder cancer. Oncol Rep 7:13PubMedGoogle Scholar
  146. 146.
    Ahmadi H, Djaladat H, Cai J et al (2014) Precystectomy serum levels of carbohydrate antigen 19-9, carbohydrate antigen 125, and carcinoembryonic antigen: prognostic value in invasive urothelial carcinoma of the bladder. Urol Oncol 32:648PubMedGoogle Scholar
  147. 147.
    Bazargani ST, Clifford T, Djaladat H et al (2017) Association between epithelial tumor markers’ trends during the course of treatment and oncological outcomes in urothelial bladder cancer. Urol Oncol 35:609Google Scholar
  148. 148.
    Bartsch G, Mitra AP, Cote RJ (2010) Expression profiling for bladder cancer: strategies to uncover prognostic factors. Expert Rev Anticancer Ther 10:1945PubMedPubMedCentralGoogle Scholar
  149. 149.
    Birkhahn M, Mitra AP, Cote RJ (2007) Molecular markers for bladder cancer: the road to a multimarker approach. Expert Rev Anticancer Ther 7:1717PubMedGoogle Scholar
  150. 150.
    Sanchez-Carbayo M, Socci ND, Lozano J et al (2006) Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 24:778PubMedGoogle Scholar
  151. 151.
    Kim WJ, Kim EJ, Kim SK et al (2010) Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Mol Cancer 9:3PubMedPubMedCentralGoogle Scholar
  152. 152.
    Kim WJ, Kim SK, Jeong P et al (2011) A four-gene signature predicts disease progression in muscle invasive bladder cancer. Mol Med 17:478PubMedPubMedCentralGoogle Scholar
  153. 153.
    Kim SK, Kim EJ, Leem SH et al (2010) Identification of S100A8-correlated genes for prediction of disease progression in non-muscle invasive bladder cancer. BMC Cancer 10:21PubMedPubMedCentralGoogle Scholar
  154. 154.
    Jeong P, Ha YS, Cho IC et al (2011) Three-gene signature predicts disease progression of non-muscle invasive bladder cancer. Oncol Lett 2:679PubMedPubMedCentralGoogle Scholar
  155. 155.
    Ha YS, Kim JS, Yoon HY et al (2012) Novel combination markers for predicting progression of nonmuscle invasive bladder cancer. Int J Cancer 131:E501PubMedGoogle Scholar
  156. 156.
    Kim YJ, Yoon HY, Kim JS et al (2013) HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: Array-based DNA methylation and expression profiling. Int J Cancer 133:1135PubMedGoogle Scholar
  157. 157.
    Friedrich MG, Chandrasoma S, Siegmund KD et al (2005) Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma. Eur J Cancer 41:2769PubMedGoogle Scholar
  158. 158.
    Su SF, de Castro Abreu AL, Chihara Y et al (2014) A panel of three markers hyper- and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin Cancer Res 20:1978PubMedGoogle Scholar
  159. 159.
    Mitra AP, Skinner EC, Miranda G et al (2013) A precystectomy decision model to predict pathological upstaging and oncological outcomes in clinical stage T2 bladder cancer. BJU Int 111:240PubMedGoogle Scholar
  160. 160.
    Ahmadi H, Mitra AP, Abdelsayed GA et al (2013) Principal component analysis based pre-cystectomy model to predict pathological stage in patients with clinical organ-confined bladder cancer. BJU Int 111:E167PubMedGoogle Scholar
  161. 161.
    Mitra AP, Bartsch CC, Cote RJ (2009) Strategies for molecular expression profiling in bladder cancer. Cancer Metastasis Rev 28:317PubMedGoogle Scholar
  162. 162.
    Mitra AP, Lam LL, Ghadessi M et al (2014) Discovery and validation of novel expression signature for postcystectomy recurrence in high-risk bladder cancer. J Natl Cancer Inst 106:dju290PubMedPubMedCentralGoogle Scholar
  163. 163.
    Mitra SA, Mitra AP, Triche TJ (2012) A central role for long non-coding RNA in cancer. Front Genet 3:17PubMedPubMedCentralGoogle Scholar
  164. 164.
    Wang LC, Xylinas E, Kent MT et al (2014) Combining smoking information and molecular markers improves prognostication in patients with urothelial carcinoma of the bladder. Urol Oncol 32:433PubMedGoogle Scholar
  165. 165.
    Volkmer JP, Sahoo D, Chin RK et al (2012) Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci U S A 109:2078PubMedPubMedCentralGoogle Scholar
  166. 166.
    Choi W, Porten S, Kim S et al (2014) Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25:152PubMedPubMedCentralGoogle Scholar
  167. 167.
    Mitra AP, Lerner SP (2015) Potential role for targeted therapy in muscle-invasive bladder cancer: lessons from the Cancer Genome Atlas and beyond. Urol Clin North Am 42:201PubMedGoogle Scholar
  168. 168.
    Srivastava S, Gray JW, Reid BJ et al (2008) Translational Research Working Group developmental pathway for biospecimen-based assessment modalities. Clin Cancer Res 14:5672PubMedPubMedCentralGoogle Scholar
  169. 169.
    Khleif SN, Doroshow JH, Hait WN (2010) AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin Cancer Res 16:3299PubMedGoogle Scholar
  170. 170.
    Kattan MW, Hess KR, Amin MB et al (2016) American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine. CA Cancer J Clin 66:370PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Urology, Keck School of Medicine of the University of Southern CaliforniaLos AngelesUSA

Personalised recommendations