Advertisement

Current Role of Checkpoint Inhibitors in Urologic Cancers

  • Kyrollis Attalla
  • John P. Sfakianos
  • Matthew D. Galsky
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 175)

Abstract

Harnessing the host immune system to combat genitourinary cancers has key theoretical advantages over other anticancer strategies including specificity and memory which should translate to favorable tolerability and response durability in the clinic. Indeed, key examples of the potential for immunotherapeutic treatment of solid tumors are derived from data in genitourinary cancers including Bacillus Calmette–Guerin for urothelial cancer, sipuleucel-T for prostate cancer, and interleukin-2 for renal cancer. Despite these successes, developing effective immunotherapeutic strategies for the treatment of cancer has largely been hampered by an incomplete understanding of tumor immunobiology and mechanisms of immune resistance. In just a few years since entering the clinic, immune checkpoint blockade has dramatically changed the landscaped of treatment for genitourinary cancer and has secured a place as a standard pillar of treatment. Further iterative bench-bedside-bench research is anticipated to extend the benefits of immunotherapeutic-based approaches to additional patients.

Keywords

Urothelial cancer Prostate cancer Renal cancer Immunotherapy Immune checkpoint blockade PD-1 PD-L1 

References

  1. 1.
    Richardson MA, Ramirez T, Russell NC, Moye LA (1999) Coley toxins immunotherapy: a retrospective review. Altern Ther Health Med 5(3):42–47. http://www.ncbi.nlm.nih.gov/pubmed/10234867. Accessed 26 Oct 2017
  2. 2.
    Tsung K, Norton JA (2006) Lessons from Coley’s toxin. Surg Oncol 15(1):25–28.  https://doi.org/10.1016/j.suronc.2006.05.002CrossRefPubMedGoogle Scholar
  3. 3.
    Bellmunt J, de Wit R, Vaughn DJ et al (February 2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med  https://doi.org/10.1056/nejmoa1613683 (NEJMoa1613683)
  4. 4.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30.  https://doi.org/10.3322/caac.21166CrossRefPubMedGoogle Scholar
  5. 5.
    Motzer RJ, Bander NH, Nanus DM (1996) Renal-cell carcinoma. N Engl J Med 335(12):865–875.  https://doi.org/10.1056/NEJM199609193351207CrossRefPubMedGoogle Scholar
  6. 6.
    Cohen HT, McGovern FJ (2005) Renal-cell carcinoma. N Engl J Med 353(23):2477–2490.  https://doi.org/10.1056/NEJMra043172CrossRefPubMedGoogle Scholar
  7. 7.
    Motzer RJ, Russo P, Nanus DM, Berg WJ. Renal cell carcinoma. Curr Probl Cancer 21(4):185–232. http://www.ncbi.nlm.nih.gov/pubmed/9285186. Accessed 5 Sept 2017
  8. 8.
    Dabestani S, Thorstenson A, Lindblad P, Harmenberg U, Ljungberg B, Lundstam S (2016) Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a population-based study. World J Urol 34(8):1081–1086.  https://doi.org/10.1007/s00345-016-1773-yCrossRefPubMedGoogle Scholar
  9. 9.
    Itsumi M, Tatsugami K (2010) Immunotherapy for renal cell carcinoma. Clin Dev Immunol 2010:1–8.  https://doi.org/10.1155/2010/284581CrossRefGoogle Scholar
  10. 10.
    Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13(3):688–696.  https://doi.org/10.1200/JCO.1995.13.3.688CrossRefPubMedGoogle Scholar
  11. 11.
    Vaishampayan U, Vankayala H, Vigneau FD et al (2014) The effect of targeted therapy on overall survival in advanced renal cancer: a study of the national surveillance epidemiology and end results registry database. Clin Genitourin Cancer 12(2):124–129.  https://doi.org/10.1016/j.clgc.2013.09.007CrossRefPubMedGoogle Scholar
  12. 12.
    Yang JC, Hughes M, Kammula U et al (2007) Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 30(8):825–830.  https://doi.org/10.1097/CJI.0b013e318156e47eCrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Thompson RH, Kuntz SM, Leibovich BC et al (2006) Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res 66(7):3381–3385.  https://doi.org/10.1158/0008-5472.CAN-05-4303CrossRefPubMedGoogle Scholar
  14. 14.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454.  https://doi.org/10.1056/NEJMoa1200690CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Motzer RJ, Rini BI, McDermott DF et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33(13):1430–1437.  https://doi.org/10.1200/JCO.2014.59.0703CrossRefPubMedGoogle Scholar
  16. 16.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813.  https://doi.org/10.1056/NEJMoa1510665CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Heine A, Held SAE, Bringmann A, Holderried TAW, Brossart P (2011) Immunomodulatory effects of anti-angiogenic drugs. Leukemia 25(6):899–905.  https://doi.org/10.1038/leu.2011.24CrossRefPubMedGoogle Scholar
  18. 18.
    McDermott DF, Atkins MB, Motzer RJ et al (2017) A phase II study of atezolizumab (atezo) with or without bevacizumab (bev) versus sunitinib (sun) in untreated metastatic renal cell carcinoma (mRCC) patients (pts). J Clin Oncol 35(6_suppl):431–431.  https://doi.org/10.1200/jco.2017.35.6_suppl.431
  19. 19.
    Hammers HJ, Plimack ER, Infante JR et al (July 2017) Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol  https://doi.org/10.1200/jco.2016.72.1985 (JCO.2016.72.198)
  20. 20.
    ESMO 2017: Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced or metastatic RCC | ESMO. http://www.esmo.org/Conferences/ESMO-2017-Congress/News-Articles/Nivolumab-Plus-Ipilimumab-versus-Sunitinib-in-First-Line-Treatment-for-Advanced-or-Metastatic-RCC. Accessed 8 Oct 2017
  21. 21.
    Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422.  https://doi.org/10.1056/NEJMoa1001294CrossRefPubMedGoogle Scholar
  22. 22.
    Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol 58(3):862–870.  https://doi.org/10.1016/j.ijrobp.2003.09.012CrossRefGoogle Scholar
  23. 23.
    Demaria S, Kawashima N, Yang AM et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734. http://www.ncbi.nlm.nih.gov/pubmed/15701862. Accessed 2 Apr 2017
  24. 24.
    Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388.  https://doi.org/10.1158/1078-0432.CCR-09-0265CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Finkelstein SE, Salenius S, Mantz CA et al (2015) Combining immunotherapy and radiation for prostate cancer. Clin Genitourin Cancer 13(1):1–9.  https://doi.org/10.1016/j.clgc.2014.09.001CrossRefPubMedGoogle Scholar
  26. 26.
    Sharabi AB, Lim M, DeWeese TL, Drake CG (2015) Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol 16(13):e498–e509.  https://doi.org/10.1016/S1470-2045(15)00007-8CrossRefPubMedGoogle Scholar
  27. 27.
    Slovin SF, Higano CS, Hamid O et al (2013) Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol 24(7):1813–1821.  https://doi.org/10.1093/annonc/mdt107CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kwon ED, Drake CG, Scher HI et al (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15(7):700–712.  https://doi.org/10.1016/S1470-2045(14)70189-5CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Beer TM, Kwon ED, Drake CG et al (2017) Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 35(1):40–47.  https://doi.org/10.1200/JCO.2016.69.1584CrossRefPubMedGoogle Scholar
  30. 30.
    McNeel DG, Smith HA, Eickhoff JC et al (2012) Phase I trial of tremelimumab in combination with short-term androgen deprivation in patients with PSA-recurrent prostate cancer. Cancer Immunol Immunother 61(7):1137–1147.  https://doi.org/10.1007/s00262-011-1193-1CrossRefPubMedGoogle Scholar
  31. 31.
    Fong L, Kwek SS, O’Brien S et al (2009) Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res 69(2):609–615.  https://doi.org/10.1158/0008-5472.CAN-08-3529CrossRefPubMedGoogle Scholar
  32. 32.
    van den Eertwegh AJ, Versluis J, van den Berg HP et al (2012) Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13(5):509–517.  https://doi.org/10.1016/S1470-2045(12)70007-4CrossRefPubMedGoogle Scholar
  33. 33.
    Jochems C, Tucker JA, Tsang K-Y et al (2014) A combination trial of vaccine plus ipilimumab in metastatic castration-resistant prostate cancer patients: immune correlates. Cancer Immunol Immunother 63(4):407–418.  https://doi.org/10.1007/s00262-014-1524-0CrossRefPubMedGoogle Scholar
  34. 34.
    Madan RA, Mohebtash M, Arlen PM et al (2012) Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13(5):501–508.  https://doi.org/10.1016/S1470-2045(12)70006-2CrossRefPubMedGoogle Scholar
  35. 35.
    Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175.  https://doi.org/10.1200/JCO.2009.26.7609CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Graff JN, Alumkal JJ, Drake CG et al (2016) Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 7(33):52810–52817.  https://doi.org/10.18632/oncotarget.10547CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56(8):1173–1182.  https://doi.org/10.1007/s00262-006-0266-zCrossRefPubMedGoogle Scholar
  38. 38.
    Boorjian SA, Sheinin Y, Crispen PL et al (2008) T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res 14(15):4800–4808.  https://doi.org/10.1158/1078-0432.CCR-08-0731CrossRefPubMedGoogle Scholar
  39. 39.
    Inman BA, Sebo TJ, Frigola X et al (2007) PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109(8):1499–1505.  https://doi.org/10.1002/cncr.22588CrossRefPubMedGoogle Scholar
  40. 40.
    Xylinas E, Robinson BD, Kluth LA et al (2014) Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur J Surg Oncol 40(1):121–127.  https://doi.org/10.1016/j.ejso.2013.08.023CrossRefPubMedGoogle Scholar
  41. 41.
    Bellmunt J, Mullane SA, Werner L et al (2015) Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann Oncol Off J Eur Soc Med Oncol 26(4):812–817.  https://doi.org/10.1093/annonc/mdv009CrossRefGoogle Scholar
  42. 42.
    Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Totterman TH (2010) Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother 33(3):225–235.  https://doi.org/10.1097/CJI.0b013e3181c01fcb00002371-201004000-00001 [pii]CrossRefPubMedGoogle Scholar
  43. 43.
    Carthon BC, Wolchok JD, Yuan J et al (2010) Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin Cancer Res 16(10):2861–2871.  https://doi.org/10.1158/1078-0432.ccr-10-0569 (1078-0432.CCR-10-0569 [pii])
  44. 44.
    Galsky MD, Hahn NM, Albany C et al (2016) Phase II trial of gemcitabine + cisplatin + ipilimumab in patients with metastatic urothelial cancer. ASCO Meet Abstr 34(2_suppl):357Google Scholar
  45. 45.
    Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515(7528):558–562.  https://doi.org/10.1038/nature13904CrossRefPubMedGoogle Scholar
  46. 46.
    Plimack ER, Bellmunt J, Gupta S et al (2017) Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol 18(2):212–220.  https://doi.org/10.1016/S1470-2045(17)30007-4CrossRefPubMedGoogle Scholar
  47. 47.
    Powles T, Loriot Y, Duran I et al (2017) IMvigor 211: a phase III randomized study examining atezolizumab versus chemotherapy for platinum-treated advanced urothelial cancer. In: EACR-AACR-SICGoogle Scholar
  48. 48.
    Galsky MD, Hahn NM, Rosenberg J et al (2011) A consensus definition of patients with metastatic urothelial carcinoma who are unfit for cisplatin-based chemotherapy. Lancet Oncol 12(3):211–214.  https://doi.org/10.1016/S1470-2045(10)70275-8CrossRefPubMedGoogle Scholar
  49. 49.
    Galsky MD, Hahn NM, Rosenberg J et al (2011) Treatment of patients with metastatic urothelial cancer “unfit” for cisplatin-based chemotherapy. J Clin Oncol 29(17):2432–2438.  https://doi.org/10.1200/JCO.2011.34.8433CrossRefPubMedGoogle Scholar
  50. 50.
    Galsky MD, Chen GJ, Oh WK et al (2011) Comparative effectiveness of cisplatin-based and carboplatin-based chemotherapy for treatment of advanced urothelial carcinoma. Ann Oncol 23(2):406–410.  https://doi.org/10.1093/annonc/mdr156 (mdr156 [pii])
  51. 51.
    De Santis M, Bellmunt J, Mead G et al (2012) Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol 30(2):191–199.  https://doi.org/10.1200/jco.2011.37.3571 (JCO.2011.37.3571 [pii])
  52. 52.
    Balar AV, Galsky MD, Rosenberg JE et al (2017) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389(10064):67–76.  https://doi.org/10.1016/S0140-6736(16)32455-2CrossRefPubMedGoogle Scholar
  53. 53.
    O’Donnell PH, Grivas P, Balar AV et al (2017) Biomarker findings and mature clinical results from KEYNOTE-052: First-line pembrolizumab (pembro) in cisplatin-ineligible advanced urothelial cancer (UC). J Clin Oncol 35(15_suppl):4502.  https://doi.org/10.1200/jco.2017.35.15_suppl.4502
  54. 54.
    Fay AP, Signoretti S, Callea M et al (2015) Programmed death ligand-1 expression in adrenocortical carcinoma: an exploratory biomarker study. J Immunother Cancer 3(1):3.  https://doi.org/10.1186/s40425-015-0047-3CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Le Tourneau C, Hoimes CJ, Zarwan C, Wong DJL, Bauer S, Wermke M, Claus R, Chin KM, von Heydebreck A, Cuillerot J-M, JLG. Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced adrenocortical carcinoma from the JAVELIN solid tumor phase Ib trial: safety and clinical activity.  https://doi.org/10.1200/jco.2016.34.15_suppl.4516
  56. 56.
    Wang J, Rodriguez J, Rao P, Pettaway CA, Pagliaro LC (2015) Programmed death ligand-1 (PD-L1) expression in penile squamous cell carcinoma. J Clin Oncol 33(7_suppl):393–393.  https://doi.org/10.1200/jco.2015.33.7_suppl.393
  57. 57.
    Udager AM, Liu T-Y, Skala SL et al (2016) Frequent PD-L1 expression in primary and metastatic penile squamous cell carcinoma: potential opportunities for immunotherapeutic approaches. Ann Oncol 27(9):1706–1712.  https://doi.org/10.1093/annonc/mdw216CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rosenberg JE, Hoffman-Censits J, Powles T et al (March 2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet (London, England).  https://doi.org/10.1016/s0140-6736(16)00561-4
  59. 59.
    Sharma P, Retz M, Siefker-Radtke A et al (2017) Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol.  https://doi.org/10.1016/S1470-2045(17)30065-7CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rini BI, Stein M, Shannon P et al (2011) Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 117(4):758–767.  https://doi.org/10.1002/cncr.25639CrossRefPubMedGoogle Scholar
  61. 61.
    Meeting Library | Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC). http://meetinglibrary.asco.org/record/94621/abstract. Accessed 6 Oct 6 2017
  62. 62.
    Meeting Library | A phase I/II study to assess the safety and efficacy of pazopanib (PAZ) and pembrolizumab (PEM) in patients (pts) with advanced renal cell carcinoma (aRCC). http://meetinglibrary.asco.org/record/152938/abstract. Accessed 6 Oct 2017
  63. 63.
    Meeting Library | First-line avelumab + axitinib therapy in patients (pts) with advanced renal cell carcinoma (aRCC): Results from a phase Ib trial. http://meetinglibrary.asco.org/record/144685/abstract. Accessed 6 Oct 2017
  64. 64.
    Atkins MB, Gupta S, Choueiri TK et al (2015) Phase Ib dose-finding study of axitinib plus pembrolizumab in treatment-naïve patients with advanced renal cell carcinoma. J Immunother Cancer 3(Suppl 2):P353.  https://doi.org/10.1186/2051-1426-3-S2-P353CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Powles T, O’Donnell PH, Massard C et al (2017) Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma. JAMA Oncol 45(2):e172411.  https://doi.org/10.1001/jamaoncol.2017.2411CrossRefGoogle Scholar
  66. 66.
    Apolo AB, Infante JR, Balmanoukian A et al (April 2017) Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol  https://doi.org/10.1200/jco.2016.71.6795 (JCO2016716795)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kyrollis Attalla
    • 1
  • John P. Sfakianos
    • 1
  • Matthew D. Galsky
    • 2
    • 3
  1. 1.Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Icahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Genitourinary Medical OncologyTisch Cancer InstituteNew YorkUSA

Personalised recommendations