Blood Pressure Variability and Blood Pressure Load

  • Gianfranco ParatiEmail author
  • Juan Eugenio Ochoa
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


A large body of evidence has consistently supported the relationship between blood pressure (BP) levels and the risk of cardiovascular complications. A series of studies in the last decades have indicated that this risk may not only depend on the magnitude of the elevation of average BP levels per se but also on the presence of other associated conditions such as increased BP variability (BPV) or an increased BP load. This concept has been supported by a series of studies, showing that increasing values of BPV either in the short term (24 h), in the mid-term (day by day), or in the long term (visit to visit) may predict development, progression, and severity of cardiac, vascular, and renal organ damage, as well as cardiovascular events and mortality. Some evidence has also been provided showing that an increased BP load, i.e., the percentage of readings above threshold values set for daytime and nighttime on 24h ambulatory BP monitoring (ABPM), is associated with indices of subclinical organ damage and cardiovascular outcomes. Whether BPV and BP load might represent useful parameters complementing the quantification of average BP levels in clinical practice is still a matter of active discussion, however. In its first part, this chapter will review the currently available data on BPV, including its mechanisms, the methodological aspects that should be considered for its assessment, and its relevance and significance for cardiovascular prognosis as well as its potential for application in clinical practice. In its second part, it will address the concept of BP load, discussing not only methodological issues related to its assessment but also its clinical relevance and whether a proper interpretation of ABPM should include its quantification in addition to average BP values and BPV.


Blood pressure values Short-term blood pressure variability Mid-term blood pressure variability Long-term blood pressure variability Blood pressure load Hypertension Cardiovascular risk prediction Cardiovascular risk prevention Office blood pressure levels Ambulatory blood pressure monitoring Home blood pressure monitoring Antihypertensive treatment 


  1. 1.
    Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10(3):143–55.PubMedGoogle Scholar
  2. 2.
    Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension. 1986;8(2):147–53.PubMedGoogle Scholar
  3. 3.
    Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25(6):1276–86.PubMedGoogle Scholar
  4. 4.
    Narkiewicz K, Winnicki M, Schroeder K, Phillips BG, Kato M, Cwalina E, et al. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39(1):168–72.PubMedGoogle Scholar
  5. 5.
    Parati G, Faini A, Valentini M. Blood pressure variability: its measurement and significance in hypertension. Curr Hypertens Rep. 2006;8(3):199–204.PubMedGoogle Scholar
  6. 6.
    Kotsis V, Stabouli S, Karafillis I, Papakatsika S, Rizos Z, Miyakis S, et al. Arterial stiffness and 24 h ambulatory blood pressure monitoring in young healthy volunteers: the early vascular ageing Aristotle University Thessaloniki Study (EVA-ARIS Study). Atherosclerosis. 2011;219(1):194–9.PubMedGoogle Scholar
  7. 7.
    Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I, Boutouyrie P, et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension. 2012;60(2):369–77.PubMedGoogle Scholar
  8. 8.
    Okada H, Fukui M, Tanaka M, Inada S, Mineoka Y, Nakanishi N, et al. Visit-to-visit variability in systolic blood pressure is correlated with diabetic nephropathy and atherosclerosis in patients with type 2 diabetes. Atherosclerosis. 2012;220(1):155–9.PubMedGoogle Scholar
  9. 9.
    Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Bombelli M, Cuspidi C, et al. Adrenergic, metabolic, and reflex abnormalities in reverse and extreme dipper hypertensives. Hypertension. 2008;52(5):925–31.PubMedGoogle Scholar
  10. 10.
    Fujii T, Uzu T, Nishimura M, Takeji M, Kuroda S, Nakamura S, et al. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am J Kidney Dis. 1999;33(1):29–35.PubMedGoogle Scholar
  11. 11.
    Verdecchia P, Schillaci G, Gatteschi C, Zampi I, Battistelli M, Bartoccini C, et al. Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation. 1993;88(3):986–92.PubMedGoogle Scholar
  12. 12.
    Haynes WG. Role of leptin in obesity-related hypertension. Exp Physiol. 2005;90(5):683–8.PubMedGoogle Scholar
  13. 13.
    Quinaglia T, Martins LC, Figueiredo VN, Santos RC, Yugar-Toledo JC, Martin JF, et al. Non-dipping pattern relates to endothelial dysfunction in patients with uncontrolled resistant hypertension. J Hum Hypertens. 2011;25(11):656–64.PubMedGoogle Scholar
  14. 14.
    Holt-Lunstad J, Steffen PR. Diurnal cortisol variation is associated with nocturnal blood pressure dipping. Psychosom Med. 2007;69(4):339–43.PubMedGoogle Scholar
  15. 15.
    Panarelli M, Terzolo M, Piovesan A, Osella G, Paccotti P, Pinna G, et al. 24-hour profiles of blood pressure and heart rate in Cushing’s syndrome. Evidence for differential control of cardiovascular variables by glucocorticoids. Ann Ital Med Int. 1990;5(1):18–25.PubMedGoogle Scholar
  16. 16.
    Murakami S, Otsuka K, Kubo Y, Shinagawa M, Matsuoka O, Yamanaka T, et al. Weekly variation of home and ambulatory blood pressure and relation between arterial stiffness and blood pressure measurements in community-dwelling hypertensives. Clin Exp Hypertens. 2005;27:231–9.PubMedGoogle Scholar
  17. 17.
    Niiranen TJ, Hanninen MR, Johansson J, Reunanen A, Jula AM. Home-measured blood pressure is a stronger predictor of cardiovascular risk than office blood pressure: the Finn-Home study. Hypertension. 2010;55(6):1346–51.PubMedGoogle Scholar
  18. 18.
    Thijs L, Staessen JA, Celis H, Fagard R, De Cort P, de Gaudemaris R, et al. The international database of self-recorded blood pressures in normotensive and untreated hypertensive subjects. Blood Press Monit. 1999;4(2):77–86.PubMedGoogle Scholar
  19. 19.
    Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Visit-to-visit blood pressure variations: new independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease. J Am Soc Hypertens. 2011;5(3):184–92.PubMedGoogle Scholar
  20. 20.
    Niiranen TJ, Asayama K, Thijs L, Johansson JK, Ohkubo T, Kikuya M, et al. Outcome-driven thresholds for home blood pressure measurement: international database of home blood pressure in relation to cardiovascular outcome. Hypertension. 2013;61(1):27–34.PubMedGoogle Scholar
  21. 21.
    Okada T, Nakao T, Matsumoto H, Nagaoka Y, Tomaru R, Iwasawa H, et al. Day-by-day variability of home blood pressure in patients with chronic kidney disease. Nihon Jinzo Gakkai Shi. 2008;50(5):588–96.PubMedGoogle Scholar
  22. 22.
    Ishikura K, Obara T, Kato T, Kikuya M, Shibamiya T, Shinki T, et al. Associations between day-by-day variability in blood pressure measured at home and antihypertensive drugs: the J-HOME-Morning study. Clin Exp Hypertens. 2012;34(4):297–304.PubMedGoogle Scholar
  23. 23.
    Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability in the European Lacidipine study on atherosclerosis: methodological aspects and effects of antihypertensive treatment. J Hypertens. 2012;30(6):1241–51.PubMedGoogle Scholar
  24. 24.
    Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57(2):160–6.PubMedGoogle Scholar
  25. 25.
    Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895–905.PubMedGoogle Scholar
  26. 26.
    Myers MG, Godwin M, Dawes M, Kiss A, Tobe SW, Grant FC, et al. Conventional versus automated measurement of blood pressure in primary care patients with systolic hypertension: randomised parallel design controlled trial. BMJ. 2011;342:d286.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Stergiou GS, Myrsilidi A, Kollias A, Destounis A, Roussias L, Kalogeropoulos P. Seasonal variation in meteorological parameters and office, ambulatory and home blood pressure: predicting factors and clinical implications. Hypertens Res. 2015;38(12):869–75.PubMedGoogle Scholar
  28. 28.
    Modesti PA, Morabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C, et al. Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension. 2006;47(2):155–61.PubMedGoogle Scholar
  29. 29.
    Sega R, Cesana G, Bombelli M, Grassi G, Stella ML, Zanchetti A, et al. Seasonal variations in home and ambulatory blood pressure in the PAMELA population. Pressione Arteriose Monitorate E Loro Associazioni. J Hypertens. 1998;16(11):1585–92.PubMedGoogle Scholar
  30. 30.
    O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31(9):1731–68.PubMedGoogle Scholar
  31. 31.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.PubMedGoogle Scholar
  32. 32.
    Parati G, Stergiou G, O’Brien E, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J Hypertens. 2014;32(7):1359–66.PubMedGoogle Scholar
  33. 33.
    Stergiou GS, Parati G, Vlachopoulos C, Achimastos A, Andreadis E, Asmar R, et al. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions—position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability. J Hypertens. 2016;34(9):1665–77.PubMedGoogle Scholar
  34. 34.
    Parati G, Stergiou GS, Asmar R, Bilo G, de Leeuw P, Imai Y, et al. European Society of Hypertension guidelines for blood pressure monitoring at home: a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring. J Hypertens. 2008;26(8):1505–26.PubMedGoogle Scholar
  35. 35.
    Mancia GPG, di Rienzo M, Zanchetti A. Blood pressure variability. In: GZA M, editor. Handbook of hypertension: pathophysiology of hypertension. Amsterdam: Elsevier; 1997. p. 117–69.Google Scholar
  36. 36.
    Mancia G, Di Rienzo M, Parati G. Ambulatory blood pressure monitoring use in hypertension research and clinical practice. Hypertension. 1993;21(4):510–24.PubMedGoogle Scholar
  37. 37.
    Parati G, Ochoa JE, Bilo G. Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep. 2012;14(5):421–31.PubMedGoogle Scholar
  38. 38.
    di Rienzo M, Grassi G, Pedotti A, Mancia G. Continuous vs intermittent blood pressure measurements in estimating 24-hour average blood pressure. Hypertension. 1983;5(2):264–9.PubMedGoogle Scholar
  39. 39.
    Booth JN 3rd, Muntner P, Abdalla M, Diaz KM, Viera AJ, Reynolds K, et al. Differences in night-time and daytime ambulatory blood pressure when diurnal periods are defined by self-report, fixed-times, and actigraphy: improving the detection of hypertension study. J Hypertens. 2016;34(2):235–43.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Juhanoja EP, Niiranen TJ, Johansson JK, Puukka PJ, Thijs L, Asayama K, et al. Outcome-driven thresholds for increased home blood pressure variability. Hypertension. 2017;69(4):599–607.PubMedGoogle Scholar
  41. 41.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.PubMedGoogle Scholar
  42. 42.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52.PubMedGoogle Scholar
  43. 43.
    O’Brien E, Asmar R, Beilin L, Imai Y, Mallion JM, Mancia G, et al. European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens. 2003;21(5):821–48.PubMedGoogle Scholar
  44. 44.
    Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension. 2005;45(1):142–61.PubMedGoogle Scholar
  45. 45.
    Muntner P, Joyce C, Levitan EB, Holt E, Shimbo D, Webber LS, et al. Reproducibility of visit-to-visit variability of blood pressure measured as part of routine clinical care. J Hypertens. 2011;29(12):2332–8.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Di Rienzo M, Castiglioni P, Parati G, Mancia G, Pedotti A. Baroreflex modulation of the cardiovascular system: new insights from the joint analysis of blood pressure and heart rate signals. Technol Health Care. 1996;4(1):121–8.PubMedGoogle Scholar
  47. 47.
    Radaelli A, Castiglioni P, Centola M, Cesana F, Balestri G, Ferrari AU, et al. Adrenergic origin of very low-frequency blood pressure oscillations in the unanesthetized rat. Am J Physiol Heart Circ Physiol. 2006;290(1):H357–64.PubMedGoogle Scholar
  48. 48.
    Bilo G, Giglio A, Styczkiewicz K, Caldara G, Maronati A, Kawecka-Jaszcz K, et al. A new method for assessing 24-h blood pressure variability after excluding the contribution of nocturnal blood pressure fall. J Hypertens. 2007;25(10):2058–66.PubMedGoogle Scholar
  49. 49.
    Mena L, Pintos S, Queipo NV, Aizpurua JA, Maestre G, Sulbaran T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23(3):505–11.PubMedGoogle Scholar
  50. 50.
    Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Bjorklund-Bodegard K, et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension. 2010;55(4):1049–57.PubMedGoogle Scholar
  51. 51.
    Levitan EB, Kaciroti N, Oparil S, Julius S, Muntner P. Relationships between metrics of visit-to-visit variability of blood pressure. J Hum Hypertens. 2013;27(10):589–93.PubMedGoogle Scholar
  52. 52.
    Levitan EB, Kaciroti N, Oparil S, Julius S, Muntner P. Blood pressure measurement device, number and timing of visits, and intra-individual visit-to-visit variability of blood pressure. J Clin Hypertens (Greenwich). 2012;14(11):744–50.Google Scholar
  53. 53.
    Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9(5):469–80.PubMedGoogle Scholar
  54. 54.
    Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ. 2016;354:i4098.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5(1):93–8.PubMedGoogle Scholar
  56. 56.
    Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11(10):1133–7.PubMedGoogle Scholar
  57. 57.
    Madden JM, O’Flynn AM, Fitzgerald AP, Kearney PM. Correlation between short-term blood pressure variability and left-ventricular mass index: a meta-analysis. Hypertens Res. 2016;39(3):171–7.PubMedGoogle Scholar
  58. 58.
    Shintani Y, Kikuya M, Hara A, Ohkubo T, Metoki H, Asayama K, et al. Ambulatory blood pressure, blood pressure variability and the prevalence of carotid artery alteration: the Ohasama study. J Hypertens. 2007;25(8):1704–10.PubMedGoogle Scholar
  59. 59.
    Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension. 2007;50(2):325–32.PubMedGoogle Scholar
  60. 60.
    Manios E, Tsagalis G, Tsivgoulis G, Barlas G, Koroboki E, Michas F, et al. Time rate of blood pressure variation is associated with impaired renal function in hypertensive patients. J Hypertens. 2009;27(11):2244–8.PubMedGoogle Scholar
  61. 61.
    Veloudi P, Blizzard CL, Head GA, Abhayaratna WP, Stowasser M, Sharman JE. Blood pressure variability and prediction of target organ damage in patients with uncomplicated hypertension. Am J Hypertens. 2016;29(9):1046–54.PubMedGoogle Scholar
  62. 62.
    Wei FF, Li Y, Zhang L, Xu TY, Ding FH, Wang JG, et al. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension. 2014;63(4):790–6.PubMedGoogle Scholar
  63. 63.
    Mancia G, Parati G, Hennig M, Flatau B, Omboni S, Glavina F, et al. Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens. 2001;19(11):1981–9.PubMedGoogle Scholar
  64. 64.
    Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability, carotid atherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis. Circulation. 2012;126(5):569–78.PubMedGoogle Scholar
  65. 65.
    Palatini P, Reboldi G, Beilin LJ, Casiglia E, Eguchi K, Imai Y, et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: the Ambulatory Blood Pressure-International Study. Hypertension. 2014;64(3):487–93.PubMedGoogle Scholar
  66. 66.
    Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ, et al. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension. 2007;49(6):1265–70.PubMedGoogle Scholar
  67. 67.
    Niiranen TJ, Maki J, Puukka P, Karanko H, Jula AM. Office, home, and ambulatory blood pressures as predictors of cardiovascular risk. Hypertension. 2014;64(2):281–6.PubMedGoogle Scholar
  68. 68.
    Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011;57(1):3–10.PubMedGoogle Scholar
  69. 69.
    Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51(1):55–61.PubMedGoogle Scholar
  70. 70.
    Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47(2):149–54.PubMedGoogle Scholar
  71. 71.
    Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107(10):1401–6.PubMedGoogle Scholar
  72. 72.
    Zhang Y, Agnoletti D, Safar ME, Blacher J. Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension. 2011;58(2):155–60.PubMedGoogle Scholar
  73. 73.
    Levi-Marpillat N, Macquin-Mavier I, Tropeano AI, Parati G, Maison P. Antihypertensive drug classes have different effects on short-term blood pressure variability in essential hypertension. Hypertens Res. 2014;37(6):585–90.PubMedGoogle Scholar
  74. 74.
    Hermida RC, Ayala DE, Mojon A, Fernandez JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int. 2010;27(8):1629–51.PubMedGoogle Scholar
  75. 75.
    Stergiou GS, Ntineri A, Kollias A, Ohkubo T, Imai Y, Parati G. Blood pressure variability assessed by home measurements: a systematic review. Hypertens Res. 2014;37(6):565–72.PubMedGoogle Scholar
  76. 76.
    Shibasaki S, Hoshide S, Eguchi K, Ishikawa J, Kario K, Japan Morning Surge-Home Blood Pressure Study Group. Increase trend in home blood pressure on a single occasion is associated with B-type natriuretic peptide and the estimated glomerular filtration rate. Am J Hypertens. 2015;28(9):1098–105.PubMedGoogle Scholar
  77. 77.
    Ushigome E, Fukui M, Hamaguchi M, Tanaka T, Atsuta H, Mogami S, et al. Maximum home systolic blood pressure is a useful indicator of arterial stiffness in patients with type 2 diabetes mellitus: post hoc analysis of a cross-sectional multicenter study. Diabetes Res Clin Pract. 2014;105(3):344–51.PubMedGoogle Scholar
  78. 78.
    Liu Z, Zhao Y, Lu F, Zhang H, Diao Y. Day-by-day variability in self-measured blood pressure at home: effects on carotid artery atherosclerosis, brachial flow-mediated dilation, and endothelin-1 in normotensive and mild-moderate hypertensive individuals. Blood Press Monit. 2013;18(6):316–25.PubMedGoogle Scholar
  79. 79.
    Matsui Y, O’Rourke MF, Hoshide S, Ishikawa J, Shimada K, Kario K. Combined effect of angiotensin II receptor blocker and either a calcium channel blocker or diuretic on day-by-day variability of home blood pressure: the Japan combined treatment with olmesartan and a calcium-channel blocker versus olmesartan and diuretics randomized efficacy study. Hypertension. 2012;59(6):1132–8.PubMedGoogle Scholar
  80. 80.
    Ushigome E, Fukui M, Hamaguchi M, Senmaru T, Sakabe K, Tanaka M, et al. The coefficient variation of home blood pressure is a novel factor associated with macroalbuminuria in type 2 diabetes mellitus. Hypertens Res. 2011;34(12):1271–5.PubMedGoogle Scholar
  81. 81.
    Matsui Y, Ishikawa J, Eguchi K, Shibasaki S, Shimada K, Kario K. Maximum value of home blood pressure: a novel indicator of target organ damage in hypertension. Hypertension. 2011;57(6):1087–93.PubMedGoogle Scholar
  82. 82.
    Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension. 2012;59(2):212–8.PubMedGoogle Scholar
  83. 83.
    Ohkubo T, Asayama K, Kikuya M, Metoki H, Hoshi H, Hashimoto J, et al. How many times should blood pressure be measured at home for better prediction of stroke risk? Ten-year follow-up results from the Ohasama study. J Hypertens. 2004;22(6):1099–104.PubMedGoogle Scholar
  84. 84.
    Hoshide S, Yano Y, Shimizu M, Eguchi K, Ishikawa J, Kario K. Is home blood pressure variability itself an interventional target beyond lowering mean home blood pressure during anti-hypertensive treatment? Hypertens Res. 2012;35(8):862–6.PubMedGoogle Scholar
  85. 85.
    Okada H, Fukui M, Tanaka M, Matsumoto S, Mineoka Y, Nakanishi N, et al. Visit-to-visit blood pressure variability is a novel risk factor for the development and progression of diabetic nephropathy in patients with type 2 diabetes. Diabetes Care. 2013;36(7):1908–12.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Parati G, Liu X, Ochoa JE. Clinical relevance of visit-to-visit blood pressure variability: impact on renal outcomes. J Hum Hypertens. 2014;28(7):403–9.PubMedGoogle Scholar
  87. 87.
    Masugata H, Senda S, Murao K, Inukai M, Hosomi N, Iwado Y, et al. Visit-to-visit variability in blood pressure over a 1-year period is a marker of left ventricular diastolic dysfunction in treated hypertensive patients. Hypertens Res. 2011;34(7):846–50.PubMedGoogle Scholar
  88. 88.
    Okada R, Okada A, Okada T, Nanasato M, Wakai K. Visit-to-visit blood pressure variability is a marker of cardiac diastolic function and carotid atherosclerosis. BMC Cardiovasc Disord. 2014;14:188.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Tedla YG, Yano Y, Carnethon M, Greenland P. Association between long-term blood pressure variability and 10-year progression in arterial stiffness: the multiethnic study of atherosclerosis. Hypertension. 2017;69(1):118–27.PubMedGoogle Scholar
  90. 90.
    Wang J, Shi X, Ma C, Zheng H, Xiao J, Bian H, et al. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: a systematic review and meta-analysis. J Hypertens. 2017;35(1):10–7.PubMedGoogle Scholar
  91. 91.
    Diaz KM, Tanner RM, Falzon L, Levitan EB, Reynolds K, Shimbo D, et al. Visit-to-visit variability of blood pressure and cardiovascular disease and all-cause mortality: a systematic review and meta-analysis. Hypertension. 2014;64(5):965–82.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Gosmanova EO, Mikkelsen MK, Molnar MZ, Lu JL, Yessayan LT, Kalantar-Zadeh K, et al. Association of systolic blood pressure variability with mortality, coronary heart disease, stroke, and renal disease. J Am Coll Cardiol. 2016;68(13):1375–86.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Ohkuma T, Woodward M, Jun M, Muntner P, Hata J, Colagiuri S, et al. Prognostic value of variability in systolic blood pressure related to vascular events and premature death in type 2 diabetes mellitus: the ADVANCE-ON Study. Hypertension. 2017;70(2):461–8.PubMedGoogle Scholar
  94. 94.
    Chang TI, Reboussin DM, Chertow GM, Cheung AK, Cushman WC, Kostis WJ, et al. Visit-to-visit office blood pressure variability and cardiovascular outcomes in SPRINT (systolic blood pressure intervention trial). Hypertension. 2017;70(4):751–8.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Shimbo D, Newman JD, Aragaki AK, LaMonte MJ, Bavry AA, Allison M, et al. Association between annual visit-to-visit blood pressure variability and stroke in postmenopausal women: data from the Women’s Health Initiative. Hypertension. 2012;60(3):625–30.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Di Iorio B, Pota A, Sirico ML, Torraca S, Di Micco L, Rubino R, et al. Blood pressure variability and outcomes in chronic kidney disease. Nephrol Dial Transplant. 2012;27(12):4404–10.PubMedGoogle Scholar
  97. 97.
    Rossignol P, Cridlig J, Lehert P, Kessler M, Zannad F. Visit-to-visit blood pressure variability is a strong predictor of cardiovascular events in hemodialysis: insights from FOSIDIAL. Hypertension. 2012;60(2):339–46.PubMedGoogle Scholar
  98. 98.
    Vidal-Petiot E, Stebbins A, Chiswell K, Ardissino D, Aylward PE, Cannon CP, et al. Visit-to-visit variability of blood pressure and cardiovascular outcomes in patients with stable coronary heart disease. Insights from the STABILITY trial. Eur Heart J. 2017;38(37):2813–22.PubMedGoogle Scholar
  99. 99.
    Blacher J, Safar ME, Ly C, Szabo de Edelenyi F, Hercberg S, Galan P. Blood pressure variability: cardiovascular risk integrator or independent risk factor? J Hum Hypertens. 2015;29(2):122–6.PubMedGoogle Scholar
  100. 100.
    Mehlum MH, Liestol K, Kjeldsen SE, Julius S, Hua TA, Rothwell PM, et al. Blood pressure variability and risk of cardiovascular events and death in patients with hypertension and different baseline risks. Eur Heart J. 2018;39(24):2243–51.PubMedGoogle Scholar
  101. 101.
    Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375(9718):906–15.PubMedGoogle Scholar
  102. 102.
    Wang JG, Yan P, Jeffers BW. Effects of amlodipine and other classes of antihypertensive drugs on long-term blood pressure variability: evidence from randomized controlled trials. J Am Soc Hypertens. 2014;8(5):340–9.PubMedGoogle Scholar
  103. 103.
    Kollias A, Stergiou GS, Kyriakoulis KG, Bilo G, Parati G. Treating visit-to-visit blood pressure variability to improve prognosis: is amlodipine the drug of choice? Hypertension. 2017;70(5):862–6.PubMedGoogle Scholar
  104. 104.
    Stolarz-Skrzypek K, Thijs L, Richart T, Li Y, Hansen TW, Boggia J, et al. Blood pressure variability in relation to outcome in the International Database of Ambulatory blood pressure in relation to cardiovascular outcome. Hypertens Res. 2010;33(8):757–66.PubMedGoogle Scholar
  105. 105.
    O’Brien E, Asmar R, Beilin L, Imai Y, Mancia G, Mengden T, et al. Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement. J Hypertens. 2005;23(4):697–701.PubMedGoogle Scholar
  106. 106.
    Urbina E, Alpert B, Flynn J, Hayman L, Harshfield GA, Jacobson M, et al. Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the council on cardiovascular disease in the young and the council for high blood pressure research. Hypertension. 2008;52(3):433–51.PubMedGoogle Scholar
  107. 107.
    Zachariah PK, Sheps SG, Bailey KR, Wiltgen CM, Moore AG. Reproducibility of ambulatory blood pressure load. J Hum Hypertens. 1990;4(6):625–31.PubMedGoogle Scholar
  108. 108.
    Zachariah PK, Sheps SG, Bailey KR, Wiltgen CM, Moore AG. Age-related characteristics of ambulatory blood pressure load and mean blood pressure in normotensive subjects. JAMA. 1991;265(11):1414–7.PubMedGoogle Scholar
  109. 109.
    White WB. Blood pressure load and target organ effects in patients with essential hypertension. J Hypertens Suppl. 1991;9(8):S39–41.PubMedGoogle Scholar
  110. 110.
    White WB, Lund-Johansen P, Omvik P. Twenty-four-hour blood pressure load as a surrogate end-point in assessing antihypertensive therapy. J Hypertens Suppl. 1993;11(4):S75–80.PubMedGoogle Scholar
  111. 111.
    Bauwens F, Duprez D, De Buyzere M, Clement DL. Blood pressure load determines left ventricular mass in essential hypertension. Int J Cardiol. 1992;34(3):335–8.PubMedGoogle Scholar
  112. 112.
    Grossman E, Alster Y, Shemesh J, Nussinovitch N, Rosenthal T. Left ventricular mass in hypertension: correlation with casual, exercise and ambulatory blood pressure. J Hum Hypertens. 1994;8(10):741–6.PubMedGoogle Scholar
  113. 113.
    Toprak A, Koc M, Tezcan H, Ozener IC, Oktay A, Akoglu E. Night-time blood pressure load is associated with higher left ventricular mass index in renal transplant recipients. J Hum Hypertens. 2003;17(4):239–44.PubMedGoogle Scholar
  114. 114.
    Mule G, Nardi E, Andronico G, Cottone S, Raspanti F, Piazza G, et al. Relationships between 24 h blood pressure load and target organ damage in patients with mild-to-moderate essential hypertension. Blood Press Monit. 2001;6(3):115–23.PubMedGoogle Scholar
  115. 115.
    Cugini P, Baldoni F, De Rosa R, Pandolfi C, Colotto M, Buccarella PA, et al. Higher blood pressure load (baric impact) in normotensives with endothelial dysfunction: a paraphysiological status of “pre-hypertension”. Clin Ter. 2002;153(5):309–15.PubMedGoogle Scholar
  116. 116.
    Andrade SS, Serro-Azul JB, Nussbacher A, Giorgi D, Pierri H, Gebara O, et al. Daytime systolic blood pressure load and previous stroke predict cardiovascular events in treated octogenarians with hypertension. J Am Geriatr Soc. 2010;58(11):2232–4.PubMedGoogle Scholar
  117. 117.
    Parati G, Liu X, Ochoa JE. What matters is not only how often but also how much blood pressure rises. Limitations of blood pressure load. J Hypertens. 2013;31(9):1776–9.PubMedGoogle Scholar
  118. 118.
    Liu M, Li Y, Wei FF, Zhang L, Han JL, Wang JG. Is blood pressure load associated, independently of blood pressure level, with target organ damage? J Hypertens. 2013;31:1812–8.PubMedGoogle Scholar
  119. 119.
    Parati G, Ochoa JE, Salvi P, Lombardi C, Bilo G. Prognostic value of blood pressure variability and average blood pressure levels in patients with hypertension and diabetes. Diabetes Care. 2013;36(Suppl 2):S312–24.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic SciencesSan Luca HospitalMilanItaly
  2. 2.Department of Medicine and SurgeryUniversity of Milano-BicoccaMilanItaly

Personalised recommendations