Advertisement

Virtual Network Embedding: Reducing the Search Space by Model Transformation Techniques

  • Stefan Tomaszek
  • Erhan Leblebici
  • Lin Wang
  • Andy Schürr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10888)

Abstract

Virtualization is a promising technology to enhance the scalability and utilization of data centers for managing, developing, and operating network functions. Furthermore, it allows to flexibly place and execute virtual networks and machines on physical hardware. The problem of mapping a virtual network to physical resources, however, is known to be \(\mathcal {NP}\)-hard and is often tackled by optimization techniques, e.g., by (ILP). On the one hand, highly tailored approaches based on heuristics significantly reduce the search space of the problem for specific environments and constraints, which, however, are difficult to transfer to other scenarios. On the other hand, ILP-based solutions are highly customizable and correct by construction with a huge search space. To mitigate search space problems while still guaranteeing correctness, we propose a combination of model transformation and ILP techniques. This combination is highly customizable and extensible in order to support multiple network domains, environments, and constraints allowing for rapid prototyping in different settings of virtualization tasks. Our experimental evaluation, finally, confirms that model transformation reduces the size of the optimization problem significantly and consequently the required runtime while still retaining the quality of mappings.

Keywords

Virtual network embedding Integer linear programming Model-driven development Triple graph grammar Data center 

Notes

Acknowledgement

This work has been funded by the German Federal Ministry of Education and Research within the Software Campus project GraTraM at TU Darmstadt, funding code 01IS12054, and by the German Research Foundation (DFG) as part of project A1 within CRC 1053–MAKI.

References

  1. 1.
    Amaldi, E., Coniglio, S., Koster, A.M.C.A., Tieves, M.: On the computational complexity of the virtual network embedding problem. Electron. Notes Discrete Math. 52, 213–220 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X.: Virtual network embedding: a survey. Commun. Surv. Tutorials 15(4), 1888–1906 (2013)CrossRefGoogle Scholar
  3. 3.
    Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.I.T.: Towards predictable datacenter networks. In: Conference on Applications, pp. 242–253 (2011)CrossRefGoogle Scholar
  4. 4.
    Guo, C., Lu, G., Wang, H.J., Yang, S., Kong, C., Sun, P., Wu, W., Zhang, Y.: SecondNet: a data center network virtualization architecture with bandwidth guarantees. In: Proceedings of the 6th International Conference, pp. 15:1–15:12 (2010)Google Scholar
  5. 5.
    Zeng, D., Guo, S., Huang, H., Yu, S., Leung, V.C.: Optimal VM placement in data centers with architectural and resource constraints. Int. J. Auton. Adapt. Commun. Syst. 8(4), 392–406 (2015)CrossRefGoogle Scholar
  6. 6.
    Yang, Z., Guo, Y.: An exact virtual network embedding algorithm based on integer linear programming for virtual network request with location constraint. China Commun. 13(8), 177–183 (2016)CrossRefGoogle Scholar
  7. 7.
    Tomaszek, S., Leblebici, E., Wang, L., Schürr, A.: Model-driven development of virtual network embedding algorithms with model transformation and linear optimization techniques. In: Modellierung 2018, pp. 39–54 (2018)Google Scholar
  8. 8.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1999)zbMATHGoogle Scholar
  9. 9.
    Sahhaf, S., Tavernier, W., Rost, M., Schmid, S., Colle, D., Pickavet, M., Demeester, P.: Network service chaining with optimized network function embedding supporting service decompositions. Comput. Netw. 93, 492–505 (2015)CrossRefGoogle Scholar
  10. 10.
    Schürr, A.: Specification of graph translators with triple graph grammars. In: Graph-Theoretic Concepts in Computer Science, pp. 151–163 (1994)CrossRefGoogle Scholar
  11. 11.
    Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual 2015 (2016)Google Scholar
  12. 12.
    Leblebici, E., Anjorin, A., Schürr, A.: Inter-model consistency checking using triple graph grammars and linear optimization techniques. In: Fundamental Approaches to Software Engineering, pp. 191–207 (2017)CrossRefGoogle Scholar
  13. 13.
    Bari, M.F., Boutaba, R., Esteves, R.P., Granville, L.Z., Podlesny, M., Rabbani, M.G., Zhang, Q., Zhani, M.F.: Data center network virtualization: a survey. Commun. Surv. Tutorials 15(2), 909–928 (2013)CrossRefGoogle Scholar
  14. 14.
    Pohlmann, U., Hüwe, M.: Model-driven allocation engineering (T). In: International Conference on Automated Software Engineering, pp. 374–384 (2015)Google Scholar
  15. 15.
    Lopes, F.A., Lima, L., Santos, M., Fidalgo, R., Fernandes, S.: High-level modeling and application validation for SDN. In: Network Operations and Management Symposium, pp. 197–205 (2016)Google Scholar
  16. 16.
    Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A systematic approach to constructing incremental topology control algorithms using graph transformation. J. Vis. Lang. Comput. 38, 47–83 (2017)CrossRefGoogle Scholar
  17. 17.
    Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model transformation technology. In: Proceedings of NasBASE (2015)Google Scholar
  18. 18.
    Kessentini, M., Sahraoui, H., Boukadoum, M.: Model transformation as an optimization problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87875-9_12CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stefan Tomaszek
    • 1
  • Erhan Leblebici
    • 1
  • Lin Wang
    • 2
  • Andy Schürr
    • 1
  1. 1.Real-Time Systems LabTU DarmstadtDarmstadtGermany
  2. 2.Telecooperation LabTU DarmstadtDarmstadtGermany

Personalised recommendations