• David del RioEmail author
  • Ainhoa Rezola
  • Juan F. Sevillano
  • Igone Velez
  • Roc Berenguer
Part of the Analog Circuits and Signal Processing book series (ACSP)


Over the past decades, there has been a massive increase in RF telecommunication technologies and systems. These systems have been developed aiming at very different applications, such as ultra-low-power communications like RFID and NFC, systems for broadband ubiquitous connectivity like the different standards for WiFi or the successive generations of cellular networks. These developments have taken place in parallel to—and driven by—the advances in CMOS technologies, which have allowed the development of high-performance, low-power, and highly integrated systems at a competitive price, making them suitable for the mass market. This chapter reviews the semiconductor technologies that allow RFIC design at mm-wave frequencies, and it also outlines the main applications of mm-waves.


  1. 1.
    A.A. Abidi, CMOS microwave and millimeter-wave ICs: the historical background, in 2014 IEEE International Symposium on Radio- Frequency Integration Technology (2014), pp. 1–5.
  2. 2.
    H. Wang, Review of CMOS millimeter-wave radio frequency integrated circuits, in 2015 IEEE MTT-S International Microwave and RF Conference (IMaRC) (2015), pp. 239–242.
  3. 3.
    L.E. Frenzel, Millimeter waves will expand the wireless future. Electronic Design, Technical Report (2013)Google Scholar
  4. 4.
    J.S. Rieh, D.H. Kim, An overview of semiconductor technologies and circuits for terahertz communication applications, in 2009 IEEE Globecom Workshops (2009), pp. 1–6.
  5. 5.
    W. Hafez, J.W. Lai, M. Feng, Record fT and fT+fMAX performance of InP/InGaAs single heterojunction bipolar transistors. Electron. Lett. 39(10), 811–813 (2003), ISSN: 0013-5194. Scholar
  6. 6.
    W. Snodgrass, B.R. Wu, K.Y. Cheng, M. Feng, Type-II GaAsSb/InP DHBTs with Record fT = 670 GHz and Simultaneous fT, fMAX>> 400 GHz", in 2007 IEEE International Electron Devices Meeting (2007), pp. 663–666.
  7. 7.
    W. Snodgrass, W. Hafez, N. Harff, M. Feng, Pseudomorphic In- P/InGaAs heterojunction bipolar transistors (PHBTs) experimentally demonstrating fT = 765 GHz at 25\(^{\circ }\) Increasing to fT = 845 GHz at -55\(^{\circ }\), in 2006 International Electron Devices Meeting (2006), pp. 1–4.
  8. 8.
    Y. Sun, III-V: Replacing Si or more than Moore? in 2010 Symposium on VLSI Technology (2010), pp. 149–150.
  9. 9.
    M. Wilson, GaAs and SiGeC BiCMOS cost comparison - is SiGeC always cheaper?Google Scholar
  10. 10.
    S. Lee, B. Jagannathan, S. Narasimha, A. Chou, N. Zamdmer, J. Johnson, R. Williams, L. Wagner, J. Kim, J.O. Plouchart, J. Pekarik, S. Springer, G. Freeman, Record RF performance of 45-nm SOI CMOS Technology, in 2007 IEEE International Electron Devices Meeting (2007), pp. 255–258.
  11. 11.
    B. Geynet, P. Chevalier, B. Vandelle, F. Brossard, N. Zerounian, M. Buczko, D. Gloria, F. Aniel, G. Dambrine, F. Danneville, D. Dutartre, A. Chantre, SiGe HBTs featuring fT \({\>}\)400GHz at room temperature, in 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (2008), pp. 121–124.
  12. 12.
    P. Chevalier, G. Avenier, G. Ribes, A. Montagnè, E. Canderle, D. Cèli, N. Derrier, C. Deglise, C. Durand, T. Quèmerais, M. Buczko, D. Gloria, O. Robin, S. Petitdidier, Y. Campidelli, F. Abbate, M. Gros- Jean, L. Berthier, J. D. Chapon, F. Leverd, C. Jenny, C. Richard, O. Gourhant, C. De-Buttet, R. Beneyton, P. Maury, S. Joblot, L. Favennec, M. Guillermet, P. Brun, K. Courouble, K. Haxaire, G. Imbert, E. Gourvest, J. Cossalter, O. Saxod, C. Tavernier, F. Foussadier, B. Ramadout, R. Bianchini, C. Julien, D. Ney, J. Rosa, S. Haendler, Y. Carminati, B. Borot, A 55 nm triple gate oxide 9 metal layers SiGe BiCMOS technology featuring 320 GHz fT / 370 GHz fMAX HBT and high-Q millimeter-wave passives, in 2014 IEEE International Electron Devices Meeting (IEDM) (2014), pp. 3.9.1–3.9.3.
  13. 13.
    H. Rücker, B. Heinemann, SiGe BiCMOS technology for mmwave systems, in 2012 International SoC Design Conference (ISOCC) (2012), pp. 266–268.
  14. 14.
    S.P. Voinigescu, T.O. Dickson, R. Beerkens, I. Khalid, P. Westergaard, A comparison of Si CMOS, SiGe BiCMOS, and In PHBT technologies for high-speed and millimeter-wave ICs, in Digest of Papers. 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (2004), pp. 111–114.
  15. 15.
    S. Shahramian, Y. Baeyens, Y.K. Chen, A 70-100 GHz directconversion transmitter and receiver phased array chipset in 0.18 \(\upmu \)m SiGe BiCMOS technology, in 2012 IEEE Radio Frequency Integrated Circuits Symposium (2012), pp. 123–126.
  16. 16.
    A. Townley, P. Swirhun, D. Titz, A. Bisognin, F. Gianesello, R. Pilard, C. Luxey, A.M. Niknejad, A 94-GHz 4TX-4RX phased-array FMCWRadar transceiver with antenna-in-package. IEEE J. Solid-State Circuits PP(99), 1–14 (2017), ISSN: 0018- 9200.
  17. 17.
    W110 WiGig R Chipset, Product Brief, Revision 0.15.12, Peraso Technologies (2015),
  18. 18.
  19. 19.
    AD7200 Multi-Band Wi-Fi Router, Talon AD7200, TP-Link (2017)Google Scholar
  20. 20.
    WirelessHD Specification Version 1.1 Overview, WirelessHD (2010),
  21. 21.
    S. Abadal, A. Mestres, M. Nemirovsky, H. Lee, A. González, E. Alarcòn, A. Cabellos-Aparicio, Scalability of broadcast performance in wireless network-on-chip. IEEE Trans. Parallel Distrib. Syst. 27(12), 3631–3645 (2016), ISSN: 1045-9219. Scholar
  22. 22.
    Y. Kim, S.W. Tam, T. Itoh, M.C.F. Chang, A 60-GHz CMOS Transceiver with on-chip antenna and periodic near field directors for multi-Gb/s contactless connector. IEEE Microw. Wirel. Compon. Lett. 27(4), 404–406 (2017), ISSN: 1531–1309. Scholar
  23. 23.
    X. Yu, S.P. Sah, H. Rashtian, S. Mirabbasi, P.P. Pande, D. Heo, A 1.2-pJ/bit 16-Gb/s 60-GHz OOK transmitter in 65-nm CMOS for wireless network-on-chip. IEEE Trans. Microw. Theory Tech. 62(10), 2357–2369 (2014), ISSN: 0018-9480. Scholar
  24. 24.
    Single-Chip SiGe Transceiver Chipset for V-band Backhaul Applications from 57 to 64 GHz, Application Note AN376, Rev. 1.0, Infineon Technologies AG (2014),
  25. 25.
    V. Jain, P. Heydari, Automotive Radar Sensors in Silicon Technologies (Springer, New York, 2013). ISBN: 978-1-4419-6774-9CrossRefGoogle Scholar
  26. 26.
    Short Range Devices; Transport and Traffic Telematics (TTT); Radar equipment operating in the 24,05 GHz to 24,25 GHz or 24,05 GHz to 24,50 GHz range; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU (2016)Google Scholar
  27. 27.
    Short Range Devices; Transport and Traffic Telematics (TTT); Ultra- wideband radar equipment operating in the 24,25 GHz to 26,65 GHz range; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU (2017)Google Scholar
  28. 28.
    Short Range Devices; Transport and Traffic Telematics (TTT); Short Range Radar equipment operating in the 77 GHz to 81 GHz band; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU (2017)Google Scholar
  29. 29.
    Short Range Devices; Transport and Traffic Telematics (TTT); Radar equipment operating in the 76 GHz to 77 GHz range; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU (2017)Google Scholar
  30. 30.
    Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission System, FCC 02-48 (2002)Google Scholar
  31. 31.
    Amendment of Parts 1, 2, 15, 90 and 95 of the Commission’s Rules to Permit Radar Services in the 76-81 GHz Band, FCC 15-16 (2015)Google Scholar
  32. 32.
    (2005/50/EC) COMMISSION DECISION of 17 January 2005 on the harmonisation of the 24 GHz range radio spectrum band for the time-limited use by automotive short-range radar equipment in the Community (2015)Google Scholar
  33. 33.
    ECC Decision (04)10, The frequency bands to be designated for the temporary introduction of Automotive Short Range Radars (SRR) (2015)Google Scholar
  34. 34.
    A. Komijani, A. Hajimiri, A Wideband 77-GHz, 17.5-dBm fully integrated power amplifier in silicon. IEEE J. Solid-State Circuits 41(8), 1749–1756 (2006), ISSN: 0018-9200. Scholar
  35. 35.
    R.B. Yishay, R. Carmon, O. Katz, D. Elad, A high gain wideband 77GHz SiGe power amplifier, in 2010 IEEE Radio Frequency Integrated Circuits Symposium (2010), pp. 529–532.
  36. 36.
    A.Y.K. Chen, Y. Baeyens, Y.K. Chen, J. Lin, A 68-82 GHz integrated wideband linear receiver using 0.18 \(\mu \)m SiGe BiCMOS, in 2010 IEEE Radio Frequency Integrated Circuits Symposium (2010), pp. 365–368.
  37. 37.
    N. Demirel, R.R. Severino, C. Ameziane, T. Taris, J.B. Bègueret, E. Kerhervè, A. Mariano, D. Pache, D. Belot, Millimeter-wave chip set for 77-81 GHz automotive radar application, in 2011 IEEE 9th International New Circuits and Systems Conference (2011), pp. 253–256.
  38. 38.
    A. Tang, Q.J. Gu, M.C.F. Chang, CMOS receivers for active and passive mm-wave imaging. IEEE Commun. Mag. 49(10), 190–198 (2011), ISSN: 0163-6804. Scholar
  39. 39.
    R. Appleby, R.N. Anderton, Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc. IEEE 95(8), 1683–1690 (2007), ISSN: 0018-9219. Scholar
  40. 40.
    E.R. Brown, Fundamentals of terrestrial millimeter-wave and THz remote sensing. Int. J. High Speed Electron. Syst. 13(04), 995–1097 (2003). Scholar
  41. 41.
    B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C.M. Rappaport, F. Las-Heras, J.A. Martinez-Lorenzo, Improving security screening: a comparison of multistatic radar configurations for human body imaging. IEEE Antennas Propag. Mag. 58(4), 35–47 (2016), ISSN: 1045-9243. Scholar
  42. 42.
    S.S. Ahmed, The State of The Art in Personnel Screening wih mmWave Technology for Security Checkpoints, Defence, Security and Space Forum, EuMW, Rohde & Schwarz (2014)Google Scholar
  43. 43.
    K. Schmalz, J. Borngräber, W. Debski, M. Elkhouly, R. Wang, P.F.X. Neumaier, D. Kissinger, H.W. Hübers, 245-GHz transmitter array in SiGe BiCMOS for gas spectroscopy. IEEE Trans. Terahertz Sci. Technol. 6(2), 318–327 (2016), ISSN: 2156-342X. Scholar
  44. 44.
    K. Schmalz, N. Rothbart, P.F.X. Neumaier, J. Borngräber, H.W. Hübers, D. Kissinger, Gas spectroscopy system for breath analysis at mm-wave/THz using SiGe BiCMOS circuits. IEEE Trans. Microw. Theory Tech. PP(99), 1–12 (2017), ISSN: 0018-9480.
  45. 45.
    N. Sharma, J. Zhang, Q. Zhong, W. Choi, J.P. McMillan, C.F. Neese, F.C.D. Lucia, K.O. Kenneth, 85-to-127 GHz CMOS transmitter for rotational spectroscopy, in Proceedings of the IEEE 2014 Custom Integrated Circuits Conference (2014), pp. 1–4.
  46. 46.
    S.D. Meo, P.F. Espìn-Lòpez, A. Martellosio, M. Pasian, G. Matrone, M. Bozzi, G. Magenes, A. Mazzanti, L. Perregrini, F. Svelto, P.E. Summers, G. Renne, L. Preda, M. Bellomi, On the feasibility of breast cancer imaging systems at millimeter-waves frequencies. IEEE Trans. Microw. Theory Tech. PP(99), 1–12 (2017), ISSN: 0018-9480.
  47. 47.
    T. Pultarova, Working group to kick off 5G standardisation process. IET Eng. Technol. Mag. 1–4 (2015)Google Scholar
  48. 48.
    G. Smail, J. Weijia, Techno-economic analysis and prediction for the deployment of 5G mobile network, in 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN) (2017), pp. 9–16.
  49. 49.
    View on 5G Architecture, Version 1.0, 5G PPP Architecture Working Group (2016)Google Scholar
  50. 50.
    R.E. Hattachi, J. Erfanian, 5G White Paper, Version 1.0, NGMN Alliance (2015)Google Scholar
  51. 51.
    5G: A Technology Vision, Huawei Technologies, 2013Google Scholar
  52. 52.
    T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013), ISSN: 2169-3536. Scholar
  53. 53.
    S. Shakib, H.C. Park, J. Dunworth, V. Aparin, K. Entesari, A 28 GHz efficient linear power amplifier for 5G phased arrays in 28 nm bulk CMOS, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (2016), pp. 352–353.
  54. 54.
    B. Sadhu, Y. Tousi, J. Hallin, S. Sahl, S. Reynolds, Ö. Renström, K. Sjögren, O. Haapalahti, N. Mazor, B. Bokinge, G. Weibull, H. Bengtsson, A. Carlinger, E. Westesson, J.E. Thillberg, L. Rexberg, M. Yeck, X. Gu, D. Friedman, A. Valdes-Garcia, A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication, in 2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 128–129.
  55. 55.
    J. Segel, M. Weldon, Lightradio whitepaper 1: technical overview, Alcatel-Lucent, Technical Report (2011)Google Scholar
  56. 56.
    D. Mavrakis, C. White, F. Benlamlih, Last mile backhaul options for west European mobile operators. Informa Telecoms & Media, Technical Report (2010)Google Scholar
  57. 57.
    Ericsson, Cloud Ran, The Benefits of Virtualization, Centralization and Coordination (2015), White paper Uen 284 23-3271Google Scholar
  58. 58.
    Fujitsu Network Communications Inc., The Benefits of Cloud-RAN Architecture in Mobile Network Expansion (2014) White paperGoogle Scholar
  59. 59.
    Radio Frequency Channel Arrangements for Fixed Service Systems Operating in the Bands 71-76 GHz AND 81-86 GHz (2009)Google Scholar
  60. 60.
    Radio-frequency channel and block arrangements for fixed wireless systems operating in the 71-76 and 81-86 GHz bands (2012)Google Scholar
  61. 61.
    Fixed Radio Systems; Characteristics and requirements for point-to- point equipment and antennas; Part 2: Digital systems operating in frequency bands from 1 GHz to 86 GHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • David del Rio
    • 1
    Email author
  • Ainhoa Rezola
    • 1
  • Juan F. Sevillano
    • 1
  • Igone Velez
    • 1
  • Roc Berenguer
    • 2
  1. 1.Ceit-IK4 Technology CenterDonostiaSpain
  2. 2.Tecnun-University of NavarraDonostiaSpain

Personalised recommendations