Phytoplankton in Alte Donau: Response to Trophic Change from Hypertrophic to Mesotrophic Over 22 Years

  • Katrin TeubnerEmail author
  • Wilfried Kabas
  • Irene E. Teubner
Part of the Aquatic Ecology Series book series (AQEC, volume 10)


The long-term phytoplankton study in groundwater-seepage lake Alte Donau, a former side-arm of the Danube River in Vienna, covers four main lake treatment periods (1–4) from 1993 to 2014. During hypertrophic conditions with annual total phosphorus (TP) concentrations of 50–70 μg L−1 and mean summer phytoplankton biovolume of 18–24 mm3 L−1 before restoration (1), the filamentous cyanobacterium Cylindrospermopsis raciborskii was the main taxon in association with Limnothrix redekei. The drastic phosphorus reduction by chemical RIPLOX-precipitation was repeated twice (2a/b, 1995 and 1996) and resulted in a prompt drop of summer phytoplankton to 4.6 mm3 L−1 in 1995 and 1.7 mm3 L−1 in 1996. Non-filamentous cyanobacteria contributed here only moderately while relative high peak contributions of chlorophytes occurred. After years of re-establishment of macrophytes (3), the summer phytoplankton biovolume remained low during the period of sustained ‘stable conditions’ (4) with values between 0.5 and 1.5 mm3 L−1. In the long-term, phytoplankton was responding to low annual total phosphorus (10–11 μg L−1) which finally indicated a mesotrophic state close to oligotrophic conditions according to the lake classification scheme. The long-term median of chlorophyll-a (chl-a) content was 0.50% of wet weight phytoplankton biomass. As the phytoplankton composition shifted from a cyanobacteria dominated assemblage to a phytoplankton assemblage that was composed of taxa of various taxonomic affiliations, the chl-a content varied considerably. Chl-a content reached its lowest median value of 0.19% when cyanobacteria formed blooms contributing 77% to total phytoplankton (period 1) and was highest with 0.83% during the peak development of chlorophytes which contributed 18% to total biovolume (period 2b). The relationship between phytoplankton chl-a and TP is more robust than between phytoplankton biovolume and TP for indicating the lake’s trophic state, although both response curves are statistically significant and provide roughly the same main picture of an ecosystem shift from hypertrophic in 1993 to mesotrophic in 2000 and the persistence of mesotrophic conditions for the 15 recent years. Trophic shifts were also indicated by the phytoplankton assemblage metric when comparing phytoplankton species composition between the lake treatment periods. The main picture of seasonal development of phytoplankton taxa and functional phytoplankton groups indicated that assemblages either prevailed in winter to spring or summer to autumn. Annual phytoplankton development thus seems primarily distinctive between the two half-year-cycles, namely the winter-spring and the summer-autumn period, rather than between the four seasons. While the seasonal development of phytoplankton follows the lake phenology commonly observed in temperate lakes, long-term compositional shifts of phytoplankton especially responded to the sustained reduction of TP forced by lake treatment measures in Alte Donau.


Oxbow lake Lake restoration Lake recover Lake biomanipulation Riplox Algae Cyanobacteria Cylindrospermopsis raciborskii Seasonality Trophic classification Phosphorus Chlorophyll-a Chlorophyll:TP Biovolume:TP Phytoplankton assemblage metric 



We thank David Livingstone and Susanne Wilhelm for valuable comments on methods for data interpolation and analyzing time series records during European Union projects REFLECT ( and CLIME ( that were useful for data treatment in Alte Donau. We thank all of the numerous collaborators and the Municipal Department for permission of publication. We further want to thank the ‘Wiener Fischereiausschuss’ (Austrian Fishery Association) for providing long-term fish catch records, Franz Wagner and Adrian Boland-Thoms for helpful comments. The long-term lake measurements were financially supported by Municipal Department – 45 (Water Management - Vienna). ‘Österreichisches Komitee Donauforschung, Internationale Arbeitsgemeinschaft Donauforschung’ partly funded data assessment (K.T.). Further data evaluation (I.T.) was partly funded by the TU Wien Science award 2015 received by Wouter Dorigo (EOWAVE).


  1. Abonyi A, Leitão M, Lançon AM, Padisák J (2012) Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698(1):233–249CrossRefGoogle Scholar
  2. Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41(3):621–634CrossRefGoogle Scholar
  3. Alster A, Kaplan-Levy RN, Sukenik A, Zohary T (2010) Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia 639(1):115–128CrossRefGoogle Scholar
  4. Amaral V, Bonilla S, Aubriot L (2014) Growth optimization of the invasive cyanobacterium Cylindrospermopsis raciborskii in response to phosphate fluctuations. Eur J Phycol 49(1):134–141CrossRefGoogle Scholar
  5. Anneville O, Gammeter S, Straile D (2005) Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshw Biol 50(10):1731–1746CrossRefGoogle Scholar
  6. Aubriot L, Bonilla S (2012) Rapid regulation of phosphate uptake in freshwater cyanobacterial blooms. Aquat Microb Ecol 67(3):251–263CrossRefGoogle Scholar
  7. Bahnwart M, Hübener T, Schubert H (1998) Downstream changes in phytoplankton composition and biomass in a lowland river–lake system (Warnow River, Germany). Hydrobiologia 391(1–3):99–111CrossRefGoogle Scholar
  8. Barone R, Naselli-Flores L (2003) Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. In: Phytoplankton and equilibrium concept: the ecology of steady-state assemblages. Springer, Dordrecht, pp 325–329CrossRefGoogle Scholar
  9. Bonilla S, Aubriot L, Soares MCS, González-Piana M, Fabre A, Huszar VL, Lürling M, Antoniades D, Padisák J, Kruk C (2012) What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol Ecol 79(3):594–607PubMedCrossRefGoogle Scholar
  10. Bouvy M, Ba N, Ka S, Sane S, Pagano M, Arfi R (2006) Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquat Microb Ecol 45(2):147–161CrossRefGoogle Scholar
  11. Brett MT, Benjamin MM (2008) A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshw Biol 53(1):194–211Google Scholar
  12. Brettum P (1989) Alger som indikator på vannkvalitet i norske innsjøer. Planteplankton. Niva-Rapport 2344:1–111 (in Norwegian) Trondheim, German Translation BG Meier) pp 112Google Scholar
  13. Bricaud A, Babin M, Morel A, Claustre H (1995) Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J Geophys Res Oceans 100(C7):13321–13332CrossRefGoogle Scholar
  14. Bukowska A, Kaliński T, Koper M, Kostrzewska-Szlakowska I, Kwiatowski J, Mazur-Marzec H, Jasser I (2017) Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Sci Rep 7(1):8342PubMedPubMedCentralCrossRefGoogle Scholar
  15. Burford MA, MCNeale KL, MCKenzie-Smith FJ (2006) The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshw Biol 51(11):2143–2153CrossRefGoogle Scholar
  16. Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo OE, Neilan BA (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cao HS, Tao Y, Kong FX, Yang Z (2008) Relationship between temperature and cyanobacterial recruitment from sediments in laboratory and field studies. J Freshw Ecol 23(3):405–412CrossRefGoogle Scholar
  18. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22(2):361–369CrossRefGoogle Scholar
  19. Centis B, Tolotti M, Salmaso N (2010) Structure of the diatom community of the River Adige (North-Eastern Italy) along a hydrological gradient. Hydrobiologia 639(1):37–42CrossRefGoogle Scholar
  20. Chen Y, Qin B, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25(4):445–453CrossRefGoogle Scholar
  21. Costanza R, Mageau M (1999) What is a healthy ecosystem? Aquat Ecol 33(1):105–115CrossRefGoogle Scholar
  22. Crossetti LO, Bicudo CEdeM (2008) Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610(1):161–173CrossRefGoogle Scholar
  23. De Senerpont Domis LN, Elser JJ, Gsell AS, Huszar VLM, Ibelings BW, Jeppesen E, Kosten S, Mooij WM, Roland F, Sommer U, Van Donk E, Winder M, Lürling M (2013) Plankton dynamics under different climatic conditions in space and time. Freshw Biol 58(3):463–482CrossRefGoogle Scholar
  24. Deng J, Qin B, Sarvala J, Salmaso N, Zhu G, Ventelä AM, Zhang Y, Gao G, Nurminen L, Kirkkala T, Tarvainen M, Vuorio K (2016) Phytoplankton assemblages respond differently to climate warming and eutrophication: a case study from Pyhäjärvi and Taihu. J Great Lakes Res 42(2):386–396CrossRefGoogle Scholar
  25. Dokulil MT (2016) Vegetative survival of Cylindrospermopsis raciborskii (Cyanobacteria) at low temperature and low light. Hydrobiologia 764(1):241–247CrossRefGoogle Scholar
  26. Dokulil M, Donabaum U (2014) Phytoplankton of the River Danube: August/September 2013 (JDS3). Danube News 30(16):6–8Google Scholar
  27. Dokulil MT, Herzig A (2009) An analysis of long-term winter data on phytoplankton and zooplankton in Neusiedler See, a shallow temperate lake, Austria. Aquat Ecol 43(3):715–725CrossRefGoogle Scholar
  28. Dokulil MT, Janauer GA (1990) Nutrient input and trophic status of the “Neue Donau”, a high-water control system along the river Danube in Vienna, Austria. Water Sci Technol 22(5):137–144CrossRefGoogle Scholar
  29. Dokulil MT, Mayer J (1996) Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol Stud 83:179–195Google Scholar
  30. Dokulil M, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12CrossRefGoogle Scholar
  31. Dokulil MT, Teubner K (2003) Eutrophication and restoration of shallow lakes–the concept of stable equilibria revisited. Hydrobiologia 506(1):29–35CrossRefGoogle Scholar
  32. Dokulil MT, Teubner K (2005) Do phytoplankton communities correctly track trophic changes? An assessment using directly measured and palaeolimnological data. Freshw Biol 50(10):1594–1604CrossRefGoogle Scholar
  33. Dokulil M, Teubner K (2006) Bewertung der Phytoplanktonstruktur stehender Gewässer gemäß der EU-Wasserrahmenrichtlinie: Der modifizierte Brettum Index. In: DGL-Tagungsbericht 2005 (29.9.-2.10.2005) Karlsruhe, pp 356–360Google Scholar
  34. Dokulil MT, Teubner K (2010) Eutrophication and climate change: present situation and future scenarios. In: Eutrophication: causes, consequences and control. Springer, Berlin, pp 1–16Google Scholar
  35. Dokulil M, Teubner K, Greisberger S (2005) Typenspezifische Referenzbedingungen für die integrierende Bewertung des ökologischen Zustandes stehender Gewässer Österreichs gemäß der EU-Wasserrahmenrichtlinie. Modul 1: Die Bewertung der Phytoplanktonstruktur nach dem Brettum-Index. Report of Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. Wien, Austria, 49 ppGoogle Scholar
  36. Dokulil MT, Donabaum K, Teubner K (2007) Modifications in phytoplankton size structure by environmental constraints induced by regime shifts in an urban lake. Hydrobiologia 578(1):59–63CrossRefGoogle Scholar
  37. Donabaum (1988) Phytoplankton. In: Alte Donau. Projektstudie im Auftrag der Wasserstraßendirektion. (ed Löffler H) Eigenverlag, pp 272Google Scholar
  38. Donabaum K (1992) Der Chlorophyll-a-Gehalt von Planktonalgen. Diss. Universität Wien, 264 ppGoogle Scholar
  39. Donabaum K, Schagerl M, Dokulil MT (1999) Integrated management to restore macrophyte domination. Hydrobiologia 395/396:87–97CrossRefGoogle Scholar
  40. Donabaum K, Pall K, Teubner K, Dokulil M (2004) Alternative stable states, resilience and hysteresis during recovery from eutrophication – a case study. SIL News 43:1–4Google Scholar
  41. Dudel G, KOHL J-G (1991) Contribution of dinitrogen fixation and denitrification to the N-budget of shallow lake. Verhandlungen der Internationalen Vereinigung für Limnologie 24:884–888Google Scholar
  42. Dunn OJ, Clark VA (1974) Applied statistics: analysis of variance and regression. Wiley, New York, p 353Google Scholar
  43. EU Water Framework Directive, 2000/60/EC (2000). (12.4.2007)
  44. Falkner R, Falkner G (2003) Distinct adaptivity during phosphate uptake by the cyanobacterium Anabaena variabilis reflects information processing about preceding phosphate supply. J Trace Microprobe Tech 21(2):363–375CrossRefGoogle Scholar
  45. Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon 42(3):313–321PubMedCrossRefGoogle Scholar
  46. Fastner J, Rücker J, Stüken A, Preußel K, Nixdorf B, Chorus I, Köhler A, Wiedner C (2007) Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ Toxicol 22(1):26–32PubMedCrossRefGoogle Scholar
  47. Felip M, Catalan J (2000) The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J Plankton Res 22(1):91–106CrossRefGoogle Scholar
  48. Feuillade M, Davies A (1994) Seasonal variations and long-term trends in phytoplankton pigments. Archiv für Hydrobiologie Beih Ergebn Limnol 41:95–111Google Scholar
  49. Figueredo CC, Giani A (2009) Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnol-Ecol Manag Inland Waters 39(4):264–272CrossRefGoogle Scholar
  50. Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2009) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32(1):119–137CrossRefGoogle Scholar
  51. Forsberg C, Ryding SO (1980) Eutrophication parameters and trophic state indicies in 30 waste receiving Swedish lakes. Arch Hydrobiol 89:189–207Google Scholar
  52. Geider RJ, MacIntyre HL (2002) Physiology and biochemistry of photosynthesis and algal carbon acquisition. In: Phytoplankton productivity: carbon assimilation in marine and freshwater ecosystems. Blackwell, Malden, pp 44–77CrossRefGoogle Scholar
  53. Geider RJ, MacIntyre HL, Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar Ecol Prog Ser 148:187–200CrossRefGoogle Scholar
  54. Grant CS, Louda JW (2010) Microalgal pigment ratios in relation to light intensity: implications for chemotaxonomy. Aquat Biol 11(2):127–138CrossRefGoogle Scholar
  55. Greisberger S, Teubner K (2007) Does pigment composition reflect phytoplankton community structure in differing temperature and light conditions in a deep alpine lake? An approach using HPLC and delayed fluorescence techniques. J Phycol 43(6):1108–1119CrossRefGoogle Scholar
  56. Hampton SE, Galloway AW, Powers SM, Ozersky T, Woo KH, Batt RD et al (2017) Ecology under lake ice. Ecol Lett 20(1):98–111PubMedCrossRefGoogle Scholar
  57. He H, Hu E, Yu J, Luo X, Li K, Jeppesen E, Liu Z (2017) Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study. Environ Sci Pollut Res 24:5012–5018CrossRefGoogle Scholar
  58. Henderson PA (2003) Practical methods in ecology. Blackwell Science Ltd, Oxford, p 163Google Scholar
  59. Hilt S, Henschke I, Rücker J, Nixdorf B (2010) Can submerged macrophytes influence turbidity and trophic state in deep lakes? Suggestions from a case study. J Environ Qual 39(2):725–733PubMedCrossRefGoogle Scholar
  60. Hofmann G (1993) Aufwuchsdiatomeen in Seen und ihre Eignung als Indikatoren der Trophie. PhD thesis, JW Goethe-University Frankfurt a Main, pp 196Google Scholar
  61. Huber V, Adrian R, Gerten D (2010) A matter of timing: heat wave impact on crustacean zooplankton. Freshw Biol 55(8):1769–1779Google Scholar
  62. Ibelings BW, Portielje R, Lammens EH, Noordhuis R, van den Berg MS, Joosse W, Meijer ML (2007) Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10(1):4–16CrossRefGoogle Scholar
  63. Isvánovics V, Shafik HM, Présing M, Juhos S (2000) Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw Biol 43(2):257–275CrossRefGoogle Scholar
  64. Jeppesen E, Peder Jensen J, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45(2):201–218CrossRefGoogle Scholar
  65. Jeppesen E, Søndergaard M, Jensen JP (2003) Climatic warming and regime shifts in lake food webs—some comments. Limnol Oceanogr 48(3):1346–1349CrossRefGoogle Scholar
  66. Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Hilt S, Kangur K, Köhler J, Lammens EHHR, Lauridsen TL, Manca M, Miracle MR, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willèn E, Winder M (2005) Lake responses to reduced nutrient loading–an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50(10):1747–1771CrossRefGoogle Scholar
  67. Jewson DH (1977) Light penetration in relation to phytoplankton content of the euphotic zone of Lough Neagh, N. Ireland. Oikos 28(1):74–83CrossRefGoogle Scholar
  68. Joehnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14(3):495–512CrossRefGoogle Scholar
  69. Kalchev RK, Beshkova MB, Boumbarova CS, Tsvetkova RL, Sais D (1996) Some allometric and non-allometric relationships between chlorophyll-a and abundance variables of phytoplankton. Hydrobiologia 341(3):235–245CrossRefGoogle Scholar
  70. Karr JR (1998) Rivers as sentinels: using the biology of rivers to guide landscape management. In: River ecology and management: lessons from the Pacific coastal ecoregion. Springer, New York, pp 502–528CrossRefGoogle Scholar
  71. Kasprzak P, Padisák J, Koschel R, Krienitz L, Gervais F (2008) Chlorophyll a concentration across a trophic gradient of lakes: an estimator of phytoplankton biomass? Limnologica 38(3):327–338CrossRefGoogle Scholar
  72. Kaštovský J, Hauer T, Mareš J, Krautová M, Bešta T, Komárek J, Desortová B, Heteša J, Hindáková A, Houk V, Janeček E, Kopp R, Marvan P, Pumann P, Skácelová O, Zapomělová E (2010) A review of the alien and expansive species of freshwater cyanobacteria and algae in the Czech Republic. Biol Invasions 12(10):3599–3625CrossRefGoogle Scholar
  73. Katsiapi M, Moustaka-Gouni M, Sommer U (2016) Assessing ecological water quality of freshwaters: PhyCoI—a new phytoplankton community index. Ecol Inform 31:22–29CrossRefGoogle Scholar
  74. Kiss KT (1987) Phytoplankton studies in the Szigetköz Section of the Danube during 1981–1982. Algol Stud/Arch Hydrobiol, Supplement Volumes: 247–273Google Scholar
  75. Kling HJ (2009) Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria): a brief historic overview and recent discovery in the Assiniboine River (Canada). Fottea 9(1):45–47CrossRefGoogle Scholar
  76. Köhler J, Behrendt H, Hoeg S (2000) Long-term response of phytoplankton to reduced nutrient load in the flushed Lake Müggelsee (Spree system, Germany). Arch Hydrobiol 148:209–229CrossRefGoogle Scholar
  77. Kõiv T, Nõges T, Laas A (2011) Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660(1):105–115CrossRefGoogle Scholar
  78. Kokociński M, Gągała I, Jasser I, Karosienė J, Kasperovičienė J, Kobos J, Koreivienė J, Soininen J, Szczurowska A, Woszczyk M, Mankiewicz-Boczek J (2017) Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. FEMS Microbiol Ecol 93(4). fix035Google Scholar
  79. Komárková J, Komárek O, Hejzlar J (2003) Evaluation of the long term monitoring of phytoplankton assemblages in a canyon-shape reservoir using multivariate statistical methods. Hydrobiologia 504(1):143–157CrossRefGoogle Scholar
  80. Krienitz L, Kasprzak P, Koschel R (1996) Long term study on the influence of eutrophication, restoration and biomanipulation on the structure and development of phytoplankton communities in Feldberger Haussee (Baltic Lake District, Germany). Hydrobiologia 330(2):89–110CrossRefGoogle Scholar
  81. Kurmayer R, Christiansen G (2009) The genetic basis of toxin production in cyanobacteria. Fr Rev 2(1):31–50Google Scholar
  82. Lepistö L, Kauppila P, Rapala J, Pekkarinen M, Sammalkorpi I, Villa L (2006) Estimation of reference conditions for phytoplankton in a naturally eutrophic shallow lake. Hydrobiologia 568(1):55–66CrossRefGoogle Scholar
  83. Liu X, Lu X, Chen Y (2011) The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae 10(3):337–343CrossRefGoogle Scholar
  84. Liu X, Teubner K, Chen Y (2016) Water quality characteristics of Poyang Lake, China, in response to changes in the water level. Hydrol Res 47(S1):238–248CrossRefGoogle Scholar
  85. Livingstone DM (2003) Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Chang 57(1–2):205–225CrossRefGoogle Scholar
  86. Lobo EA, Heinrich CG, Schuch M, Wetzel CE, Ector L (2016) Diatoms as bioindicators in rivers. In: River Algae. Springer International Publishing, Cham, pp 245–271CrossRefGoogle Scholar
  87. Löffler H (ed) (1988) Alte Donau. Projektstudie im Auftrag der Wasserstraßendirektion. Eigenverlag, pp 272Google Scholar
  88. Mantzouki E, Visser PM, Bormans M, Ibelings BW (2016) Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat Ecol 50(3):333–350CrossRefGoogle Scholar
  89. Marchetto A, Padedda BM, Mariani MA, Luglie A, Sechi N (2009) A numerical index for evaluating phytoplankton response to changes in nutrient levels in deep mediterranean reservoirs. J Limnol 68(1):106–121CrossRefGoogle Scholar
  90. Mayer J, Dokulil MT, Salbrechter M, Berger M, Posch T, Pfister G, Kirschner AKT, Velimirov B, Steitz A, Ulbricht T (1997) Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliates and bacteria in a hypertrophic shallow lake in Vienna, Austria, In Shallow Lakes’ 95 (Hydrobiologia 342/343:pp 165–174)Google Scholar
  91. McCauley E, Downing JA, Watson S (1989) Sigmoid relationships between nutrients and chlorophyll among lakes. Can J Fish Aquat Sci 46(7):1171–1175CrossRefGoogle Scholar
  92. McKew BA, Davey P, Finch SJ, Hopkins J, Lefebvre SC, Metodiev MV, Oxborough K, Raines CA, Lawson T, Geider RJ (2013) The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516). New Phytol 200(1):74–85PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mihaljević M, Špoljarić D, Stević F, Cvijanović V, Kutuzović BH (2010) The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: shift to a clear state. Limnologica 40(3):260–268CrossRefGoogle Scholar
  94. Mischke U (2003) Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecol 24:S11–S23CrossRefGoogle Scholar
  95. Moog O (ed) (2002) Fauna Aquatica Austriaca. A comprehensive species Inventory of Austrian Aquatic Organisms with ecological notes. Edition 2002–Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, ViennaGoogle Scholar
  96. Moog O, Chovanec A (2000) Assessing the ecological integrity of rivers: walking the line among ecological, political and administrative interests. Hydrobiologia 422:99–109CrossRefGoogle Scholar
  97. Morabito G, Ruggiu D, Panzani P (2002) Recent dynamics (1995–1999) of the phytoplankton assemblages in Lago Maggiore as a basic tool for defining association patterns in the Italian deep lakes. J Limnol 61(1):129–145CrossRefGoogle Scholar
  98. Morabito G, Oggioni A, Caravati E, Panzani P (2007) Seasonal morphological plasticity of phytoplankton in Lago Maggiore (N. Italy). Hydrobiologia 578(1):47–57CrossRefGoogle Scholar
  99. Moustaka-Gouni M, Vardaka E, Michaloudi E, Kormas KA, Tryfon E, Mihalatou H, Kormas KA, Tryfon E, Mihilatou H, Gkelis S, Lanaras T (2006) Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms. Limnol Oceanogr 51(1part2):715–727CrossRefGoogle Scholar
  100. Müller-Navarra D, Güss S, von Storch H (1997) Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Glob Chang Biol 3(5):429–438CrossRefGoogle Scholar
  101. Mur LR, Schreurs H, Visser P (1993) How to control undesirable cyanobacterial dominance. In: Giussani G, Callieri C (eds) Strategies for lake ecosystems beyond 2000, Proceedings of 5th International Conference on Conservation and management of Lakes, Stresa 1993, pp 565–569Google Scholar
  102. Napiórkowska-Krzebietke A, Pasztaleniec A, Hutorowicz A (2012) Phytoplankton metrics response to the increasing phosphorus and nitrogen gradient in shallow lakes. J Elem 17(2):289–303Google Scholar
  103. Naselli-Flores L, Barone R (2003) Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. In: Phytoplankton and equilibrium concept: the ecology of steady-state assemblages. Springer, Dordrecht, pp 133–143CrossRefGoogle Scholar
  104. Naselli-Flores L, Barone R (2011) Invited review-fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogam Algol 32(2):157–204CrossRefGoogle Scholar
  105. Nicklisch A (1998) Growth and light absorption of some planktonic cyanobacteria, diatoms and Chlorophyceae under simulated natural light fluctuations. J Plankton Res 20(1):105–119CrossRefGoogle Scholar
  106. Nicklisch A, Fietz S (2001) The influence of light fluctuations on growth and photosynthesis of Stephanodiscus neoastraea (diatom) and Planktothrix agardhii (cyanobacterium). Arch Hydrobiol 151(1):141–156CrossRefGoogle Scholar
  107. Nicklisch A, Shatwell T, Köhler J (2007) Analysis and modelling of the interactive effects of temperature and light on phytoplankton growth and relevance for the spring bloom. J Plankton Res 30(1):75–91CrossRefGoogle Scholar
  108. Nixdorf B, Deneke R (1997) Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343:269–284CrossRefGoogle Scholar
  109. Nixdorf B, Mischke U, Rücker J (2003) Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502:111–121CrossRefGoogle Scholar
  110. Nõges P, Van De Bund W, Cardoso AC, Solimini AG, Heiskanen AS (2009) Assessment of the ecological status of European surface waters: a work in progress. Hydrobiologia 633(1):197–211CrossRefGoogle Scholar
  111. Nõges P, Mischke U, Laugaste R, Solimini AG (2010) Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646(1):33–48CrossRefGoogle Scholar
  112. OECD, Organization for Economic Cooperation and Development (1982) Eutrophication of waters monitoring, assessment, and control. OECD, ParisGoogle Scholar
  113. ÖNORM M6231 (2001) Richtlinie für die ökologische Untersuchung und Bewertung von stehenden Gewässern. Österreichisches Normungsinstitut. Wien, 58 ppGoogle Scholar
  114. Ozimek T, Gulati RD, van Donk E (1990) Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200(1):399–407CrossRefGoogle Scholar
  115. Padisák J (1993) The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249(1–3):135–156CrossRefGoogle Scholar
  116. Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch Hydrobiol Suppl 107(4):563–593Google Scholar
  117. Padisák J, Borics G, Grigorszky I, Soróczki-Pintér É (2006) Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553(1):1–14CrossRefGoogle Scholar
  118. Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1):1–19CrossRefGoogle Scholar
  119. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65(4):995–1010PubMedCrossRefGoogle Scholar
  120. Pasztaleniec A (2016) Phytoplankton in the ecological status assessment of European lakes–advantages and constraints. Ochrona Srodowiska i Zasobów Naturalnych 27(1):26–36CrossRefGoogle Scholar
  121. Phillips G, Willby N, Moss B (2016) Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquat Bot 135:37–45CrossRefGoogle Scholar
  122. Poikane S, Van den Berg M, Hellsten S, de Hoyos C, Ortiz-Casas J, Pall K, Portielje R, Phillips G, Solheim AL, Tierney D, Wolfram G, van de Bund W (2011) Lake ecological assessment systems and intercalibration for the European water framework directive: aims, achievements and further challenges. Procedia Environ Sci 9:153–168CrossRefGoogle Scholar
  123. Qin BQ, Gao G, Zhu GW, Zhang YL, Song YZ, Tang XM, Xu H, Deng JM (2013) Lake eutrophication and its ecosystem response. Chin Sci Bull 58(9):961–970CrossRefGoogle Scholar
  124. Qiu D, Wu Z, Liu B, Deng J, Fu G, He F (2001) The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecol Eng 18(2):147–156CrossRefGoogle Scholar
  125. Reynolds CS (1992) Eutrophication and the management of planktonic algae: what Vollenweider couldn’t tell us. In: Sutcliffe DW, Jones JG (eds) Eutrophication-research and application to water supply, pp 4–29Google Scholar
  126. Reynolds C, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional group classification of the freshwater phytoplankton. J Plankton Res 24:417–428CrossRefGoogle Scholar
  127. Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93(2):157–191CrossRefGoogle Scholar
  128. Rimet F, Druart JC, Anneville O (2009) Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974–2007). Eco Inform 4(2):99–110CrossRefGoogle Scholar
  129. Ripl W (1976) Biochemical oxidation of polluted lake sediments with nitrate. A new restoration method. Ambio 5(3):112–135Google Scholar
  130. Rodhe W (1955) Can plankton production proceed during winter darkness in subarctic lakes? Verhandlungen der Internationalen Vereinigung für Limnologie 12:117–122Google Scholar
  131. Rojo C, Alvarez-Cobelas M (1994) Population dynamics of Limnothrix redekei, Oscillatoria lanceaformis, Planktothrix agardhii and Pseudanabeana limnetica (cyanobacteria) in a shallow hypertrophic lake (Spain). Hydrobiologia 275/276:165–171CrossRefGoogle Scholar
  132. Rott E (1981) Some results from phytoplankton counting intercalibrations. Schweiz Z Hydrol 43:34–62Google Scholar
  133. Sapna S, Gray DK, Read JS, O’Reilly CM, Schneider P, Qudrat A, Gries C, Stefanoff S, Hampton SE, Hook S, Lenters JD, Livingstone DM, McIntyre PB, Adrian R, Allan MG, Anneville O, Arvola L, Austin J, Bailey J, Baron JS, Brookes J, Chen Y, Daly R, Dokulil M, Dong B, Ewing K, de Eyto E, Hamilton D, Havens K, Haydon S, Hetzenauer H, Heneberry J, Hetherington AL, Higgins SN, Hixson E, Izmest’eva LR, Jones BM, Kangur K, Kasprzak P, Köster O, Kraemer BM, Kumagai M, Kuusisto E, Leshkevich G, May L, MacIntyre S, Müller-Navarra D, Naumenko M, Nõges P, Nõges T, Niederhauser P, North RP, Paterson A, Plisnier P-D, Rigosi A, Rimmer A, Rogora M, Rudstam L, Rusak JA, Salmaso N, Samal NR, Schindler DE, Schladow G, Schmidt SR, Schultz T, Silow EA, Straile D, Teubner K, Verburg P, Voutilainen A, Watkinson A, Weyhenmeyer GA, Williamson CE, Woo KH (2015) A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci Data 2:150008CrossRefGoogle Scholar
  134. Schagerl M, Donabaum K (2003) Patterns of major photosynthetic pigments in freshwater algae. 1. Cyanoprokaryota, Rhodophyta and Cryptophyta. Ann Limnol-Int J Limnol 39(1):35–47CrossRefGoogle Scholar
  135. Schagerl M, Müller B (2006) Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. J Plant Physiol 163(7):709–716PubMedCrossRefGoogle Scholar
  136. Schagerl M, Riedler P (2000) Phytoplankton composition in the River Danube floodplain system Regelsbrunner Au. Abhandlungen der Zoologisch-Botanischen Gesellschaft in Österreich 31:43–62Google Scholar
  137. Scheffer M, Straile D, Van Nes EH, Hosper H (2001) Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–1783CrossRefGoogle Scholar
  138. Schmidt A (1994) Main characteristics of the phytoplankton of the Southern Hungarian section of the River Danube. In: Phytoplankton in turbid environments: rivers and shallow lakes. Springer, Dordrecht, pp 97–108CrossRefGoogle Scholar
  139. Schreurs H (1992) Cyanobacterial dominance – relations to eutrophication and lake morphology, Academisch Proefschrift, Universiteit van AmsterdamGoogle Scholar
  140. Shatwell T, Koehler J, Nicklisch A (2008) Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Glob Chang Biol 14(9):2194–2200CrossRefGoogle Scholar
  141. Shatwell T, Nicklisch A, Köhler J (2012) Temperature and photoperiod effects on phytoplankton growing under simulated mixed layer light fluctuations. Limnol Oceanogr 57(2):541–553CrossRefGoogle Scholar
  142. Solimini AG, Cardoso AC, Carstensen J, Free G, Heiskanen AS, Jepsen N, Nõges P, Poikane S, Van De Bund W (2008) The monitoring of ecological status of European freshwaters. In: The water framework directive: ecological and chemical status monitoring. Wiley, Chichester, pp 29–60CrossRefGoogle Scholar
  143. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106(4):433–471Google Scholar
  144. Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeooesen E, Lürling M, Molinero JC, Mooij WM, Van Donk E, Winder M (2012) Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448CrossRefGoogle Scholar
  145. Søndergaard M, Jensen JP, Jeppesen E (2005) Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshw Biol 50:1605–1615CrossRefGoogle Scholar
  146. Søndergaard M, Larsen SE, Jørgensen TB, Jeppesen E (2011) Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecol Indic 11(5):1403–1412CrossRefGoogle Scholar
  147. Sonntag B, Posch T, Klammer S, Teubner K, Psenner R (2006) Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat Microb Ecol 43(2):193–207CrossRefGoogle Scholar
  148. Stefaniak K, Kokocinski M, Messyasz B (2005) Dynamics of Planktothrix agardhii (GOM.) ANAGN. ET blooms in polymictic lake Laskownickie and Grylewskie (Wielkopolska region) Poland. Oceanol Hydrobiol Stud 34(3):125–136Google Scholar
  149. Straile D (2002) North Atlantic oscillation synchronizes food-web interactions in central European lakes. Proc R Soc Lond B Biol Sci 269(1489):391–395CrossRefGoogle Scholar
  150. Straile D, Adrian R (2000) The North Atlantic oscillation and plankton dynamics in two European lakes – two variations on a general theme. Glob Chang Biol 6(6):663–670CrossRefGoogle Scholar
  151. Stüken A, Rücker J, Edrulata T, Preussel K, Hemm M, Nixdorf B, Karsten U, Wiedner C (2006) Distribution of three alien cyanobacterial species (Nostocales) in Northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45(6):696–703CrossRefGoogle Scholar
  152. Täuscher L (2014) Checkliste der Algen (Cyanobacteria et Phycophyta). Pflanzen und Tiere Sachsen-Anhalts, 66 ppGoogle Scholar
  153. Teubner K (1996) Struktur und Dynamik des Phytoplanktons in Beziehung zur Hydrochemie und Hydrophysik der Gewässer: Eine multivariate statistische Analyse an ausgewählten Gewässern der Region Berlin-Brandenburg. Ph.D thesis, Department of Ecophysiology, Humboldt University Berlin, 232 ppGoogle Scholar
  154. Teubner K (2000) Synchronised changes of planktonic cyanobacterial and diatom assemblages in North German waters reduce seasonality to two principal periods. Arch Hydrobiol Spec Issue Adv Limnol 55:564–580Google Scholar
  155. Teubner K (2006) Ergebnisse des Forschungsvorhabens „Bedingungen für das Auftreten toxinbildender Cyanobakterien (Blaualgen) in bayerischen Seen und anderen stehenden Gewässern. In: Toxinbildende Cyanobakterien (Blaualgen) in bayerischen Gewässern: Massenentwicklungen, Gefährdungspotential, wasserwirtschaftlicher Bezug. ed Ha Morscheid. Bayerisches Landesamt für Wasserwirtschaft Materialienband 125Google Scholar
  156. Teubner K, Dokulil MT (2002) Ecological stoichiometry of TN: TP: SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages. Arch Hydrobiol 154(4):625–646CrossRefGoogle Scholar
  157. Teubner K, Feyerabend R, Henning M, Nicklisch A, Woitke P, Kohl J-G (1999) Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen-phosphorus-ratio in hypertrophic riverine lakes. Arch Hydrobiol Spec Issue Adv Limnol 54:325–344Google Scholar
  158. Teubner K, Sarobe A, Vadrucci MR, Dokulil MT (2001) 14C photosynthesis and pigment pattern of phytoplankton as size related adaptation strategies in alpine lakes. Aquat Sci-Res Across Bound 63(3):310–325CrossRefGoogle Scholar
  159. Teubner K, Tolotti M, Greisberger S, Morscheid H, Dokulil MT, Morscheid H (2003a) Steady state phytoplankton in a deep pre-alpine lake: species and pigments of epilimnetic versus metalimetic assemblages. Hydrobiologia 502:49–64CrossRefGoogle Scholar
  160. Teubner K, Crosbie N, Donabaum K, Kabas W, Kirschner A, Pfister G, Salbrechter M, Dokulil MT (2003b) Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnol Oceanogr 48(3):1141–1149CrossRefGoogle Scholar
  161. Teubner K, Morscheid H, Tolotti M, Greisberger S, Morscheid H, Kucklentz V (2004) Bedingungen für das Auftreten toxinbildender Blaualgen in bayerischen Seen und anderen stehenden Gewässern. Bayerisches Landesamt für Wasserwirtschaft Materialien 113Google Scholar
  162. Teubner K, Pall K, Donabaum K (2015) Restoration of the urban oxbow lake Alte Donau – a case study. Danube News 32:12–14Google Scholar
  163. Tolstoy A (1979) Chlorophyll a in relation to phytoplankton volume in some Swedish lakes. Arch Hydrobiol 85(2):133–151Google Scholar
  164. Vadrucci MR, Barbone E, Ungaro N, Romano A, Bucci R (2017) Application of taxonomic and morpho-functional properties of phytoplankton communities to water quality assessment for artificial lakes in the Mediterranean ecoregion. J Plankton Res 39(3):550–563CrossRefGoogle Scholar
  165. Vollenweider RA (1968) The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Organisation for Economic Cooperation and Development, Paris, p 159Google Scholar
  166. Vörös L, Padisák J (1991) Phytoplankton biomass and chlorophyll-a in some shallow lakes in Central Europe. Hydrobiologia 215(2):111–119CrossRefGoogle Scholar
  167. Watson S, McCauley E, Downing JA (1992) Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can J Fish Aquat Sci 49(12):2605–2610CrossRefGoogle Scholar
  168. Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol Oceanogr 44(7):1788–1792CrossRefGoogle Scholar
  169. Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Glob Chang Biol 10(11):1844–1856CrossRefGoogle Scholar
  170. Woitke P, Schiwietz T, Teubner K, Kohl JG (1996) Annual profiles of photosynthetic lipophilic pigments in four freshwater lakes in relation to phytoplankton counts as well as to nutrient data. Arch Hydrobiol 137(3):363–384Google Scholar
  171. Wu QL, Chen Y, Xu K, Liu Z, Hahn MW (2007) Intra-habitat heterogeneity of microbial food web structure under the regime of eutrophication and sediment resuspension in the large subtropical shallow Lake Taihu, China. Hydrobiologia 581(1):241–254CrossRefGoogle Scholar
  172. Wu N, Schmalz B, Fohrer N (2010) Distribution of phytoplankton in a German lowland river in relation to environmental factors. J Plankton Res 33(5):807–820CrossRefGoogle Scholar
  173. Wu Z, He H, Cai Y, Zhang L, Chen Y (2014) Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze-connected lake. Hydrobiologia 732(1):61–70CrossRefGoogle Scholar
  174. Zohary T, Padisák J, Naselli-Flores L (2010) Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639(1):261–269CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. of Limnology & Bio-OceanographyUniversity of ViennaWienAustria
  2. 2.ViennaAustria
  3. 3.Department of Geodesy and Geoinformation, Faculty of Mathematics and GeoinformationVienna University of TechnologyViennaAustria

Personalised recommendations