Advertisement

Sediment

  • P. RiedlerEmail author
  • Karl Donabaum
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 10)

Abstract

Lake sediments play an important role for the nutrient cycling, especially in shallow, unstratified water bodies. Phosphor release by the sediments is often a main source for internal loading in eutrophicated shallow lakes. First investigations of the sediments of Alte Donau were done by Löffler (Alte Donau, Projektstudie im Auftrag der Wasserstrassendirektion, 272 pp, 1988). More detailed research was done prior and after the restoration of Alte Donau. The results of the investigations by Ripl (Sediment treatment. In: Eiseltová M (ed) Restoration of lake ecosystems – a holistic approach, vol 32. IWRB Publication, Slimbridge, pp 75–81, ISBN 0-9505731-5-9, 1994) were used as the basis to establish the treatment process. Considerably low iron content of the sediment and a high proportion of organic content were of importance to use the Riplox method (Ripl W, Sediment treatment. In: Eiseltová M (ed) Restoration of lake ecosystems – a holistic approach, vol 32. IWRB Publication, Slimbridge, pp 75–81, ISBN 0-9505731-5-9, 1994) as the main restoration measure in Alte Donau. The aim of the investigations in 2004 was to evaluate the sustainability of the restoration measures and to create a data base recognizing undesirable trends like an enrichment of the organic content in an early stage. In this chapter the focus is set on the results of the investigations in 2004.

Keywords

Sediment Interstitial water Phosphor binding capacity Iron content Apatite 

References

  1. Geochemischer Atlas (1988) Geologische Bundesanstalt WienGoogle Scholar
  2. Boers P, van der Does J, Quaak M, van der Vlugt J, Walker P (1992) Fixation of phosphorus in lake sediments using iron (III) chloride: experiences, expectations. Hydrobiologia 233:211–212CrossRefGoogle Scholar
  3. Boers P, van der Does J, Quaak M, van der Vlugt J (1994) Phosphorus fixation with iron(III)chloride: a new method to combat internal phosphorus loading in shallow lakes? Arch Hydrobiol 129:339–351Google Scholar
  4. Boström B, Andersen JM, Fleischer S, Jannson M (1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170:229–244CrossRefGoogle Scholar
  5. Christensen KK (1999) Comparison of iron and phosphorus mobilization from sediments inhabited by Littorella uniflora and Sphagnum sp. at different sulfate concentrations. Arch Hydrobiologia 145:257–275CrossRefGoogle Scholar
  6. Dokulil M, Dirry P, Pall R, Janauer G, Knoll A, Mayer J, Zoufal R (1993) Limnologische Untersuchungen zur Sanierung der Alten Donau. Zustandsanalyse des freien Wassers und des Sedimentes im Jahr 2003. Studie im Auftrag der Stadt Wien, MA 45 Wasserbau, 105 ppGoogle Scholar
  7. Dokulil M, Knoll A, Mayer J (1995) Impact of diffuse nutrient input by polluted groundwater and sediment release to Alte Donau, the old course of river Danube in Vienna, Austria. Proceedings of 2nd international. IAWQ conference DIFusePOL’95, Brno & Prague, Czech Republic: part II, pp 462–467Google Scholar
  8. Dokulil M, Donabaum K, Janauer G, Kabas W, Kirschner A, Müller H, Pall K, Pfister G, Salbrechter M, Schagerl M, Schuh T, Steitz A, Ulbricht T, Velimirov B (1997) Limnologische Untersuchungen zur Sanierung der Alten Donau. Zustandsanalyse 1995/96 (Endbericht). Studie im Auftrag der MA 45, 266 SGoogle Scholar
  9. Donabaum K, Riedler P (2004) Wasserspiegelabsenkung Alte Donau 2003. Wasserwirtschaftlicher Versuch. Studie im Auftrag der Stadt Wien, MA 45, 29 ppGoogle Scholar
  10. Donabaum K, Wolfram G (2001) Kahrteich – Gewässerökologische Untersuchung. Endbericht 2000, 30 ppGoogle Scholar
  11. Donabaum K, Riedler P, Wolfram W, Pall K, Velimirov B. Kirschner A (2003) Alte Donau 2002. Monitoring. Studie im Auftrag der Stadt Wien, MA 45, 160 ppGoogle Scholar
  12. Donabaum K, Kabas W, Riedler P, Salbrechter M (2005) Alte Donau 2004. Monitoring. Hydrochemie & Plankton. Studie im Auftrag der Stadt Wien, MA 45, 100 ppGoogle Scholar
  13. Golterman HL (2001) Phosphate release from anoxic sediments or “What did Mortimer really write?”. Hydrobiologia 450:99–106CrossRefGoogle Scholar
  14. Gonsiorczyk T, Casper P, Koschel R (1998) Phosphorus-binding forms in the sediments of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Wat Sc Techn 37:51–58CrossRefGoogle Scholar
  15. Greisberger S, Teubner K (2007) Does pigment composition reflect phytoplankton community structure in differing temperature and light conditions in a deep alpine lake? An approach using HPLC and delayed fluorescence (DF) techniques. J Phycol 43:1108–1119CrossRefGoogle Scholar
  16. Hupfer M (2001) Seesedimente. In: Dokulil M, Hamm A, Kohl J-G (eds) Ökologie und Schutz von Seen. Faculats – UTB, Wien, 499 ppGoogle Scholar
  17. Istvanovics V, Herodek S, Szilagyi F (1989) Phosphate adsorption by different sediment fractions in Lake Balaton and its protecting reservoirs. Water Res 23(11):1357–1366CrossRefGoogle Scholar
  18. Jäger D (1994) Effects of hypolimnetic water aeration and iron-phosphate precipitation on the trophic level of Lake Krupunder. Hydrobiologia 275–276:433–444CrossRefGoogle Scholar
  19. Jäger P, Röhrs J (1990) Phosphorfällung über Calciumcarbonat im eutrophen Wallersee (Salzburger Alpenvorland, Österreich). Int Revue Ges Hydrobiol 75:153–173CrossRefGoogle Scholar
  20. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194CrossRefGoogle Scholar
  21. Kjellberg-Christensen K (1997) Differences in iron, manganese, and phosphorus binding in freshwater sediment vegetated with Littorella uniflora and benthic micoralgae. Water Air Soil Pollut 99:265–273Google Scholar
  22. Kreuzinger N, Matsché N (2000) Danube Island – an aquifer for nutrient and water quality transfer into the New Danube (Vienna, Austria). Large Rivers 12(1), Arch Hydrobiol (Suppl. 135/1):23–37CrossRefGoogle Scholar
  23. Löffler H (1988) Alte Donau, Projektstudie im Auftrag der Wasserstrassendirektion, 272 ppGoogle Scholar
  24. Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: spectrometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  25. Mackereth FJH (1966) Some chemical observations on post-glacial lake sediments. Philos Trans R Soc London Ser B 250(765):165–213CrossRefGoogle Scholar
  26. Prairie YT, De Montigny C, del Giorgio PA (2001) Anaerobic phosphorus release from sediments: a paradigm revisited. Verh Int Verein Limnol 27:4013–4020Google Scholar
  27. Psenner R (1984) Phosphorus release patterns from sediments of a meromictic mesotrophic lake (Piburger See, Austria). Verh Int Verein Limnol 22:219–228Google Scholar
  28. Psenner R, Pucsko R, Sager M (1984) Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Arch Hydrobiol/Suppl 70:111–155Google Scholar
  29. Riedler P, Wolfram G, Donabaum K, Salbrechter M (2002) Kahrteich – Gewässerökologische Untersuchung Bericht 1998/99, 178 ppGoogle Scholar
  30. Ripl W (1994) Sediment treatment. In: Eiseltová M (ed) Restoration of lake ecosystems – a holistic approach, vol 32. IWRB Publication, Slimbridge, pp 75–81, ISBN 0-9505731-5-9Google Scholar
  31. Ripl W (1997) Sanierung Alte Donau (Wien). Begleituntersuchung zur kombinierten Eisen- und Nitratbehandlung. Sediment und Wasserstandsuntersuchungen. Endbericht im Auftrag der Stadt Wien, MA 45 Wasserbau, 130 ppGoogle Scholar
  32. Ripl W, Wolter KD (1995) Sanierung Alte Donau (Wien). Begleituntersuchung zur kombinierten Eisen- und Nitratbehandlung. Zwischenbericht im Auftrag der Stadt Wien, MA 45 Wasserbau, 77 ppGoogle Scholar
  33. Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfate formation. Arch Hydrobiol 139:347–378Google Scholar
  34. Schagerl M, Donabaum K (2003) Patterns of major photosynthetic pigments in fresh water algae. 1. Dinophyta, Euglenophyta, Chlorophyceae and Charales. Ann Limnol Int J Lim 39(1):49–62CrossRefGoogle Scholar
  35. Schagerl M, Pichler C, Donabaum K (2003) Patterns of major photosynthetic pigments in fresh water algae. 1. Cyanoprokaryota, Rhodophyta and Cryptophyta. Ann Limnol Int J Lim 39(1):35–47CrossRefGoogle Scholar
  36. Velimirov B, Fischer UR, Kirschner AKT, Nemetz-Wieltschnig C, Steitz A (2004). Sanierung Alte Donau, Limnologische Untersuchung – Zustandsanalyse 2003, Berichtsteil Mikrobioloige, Studie im Auftrag der Stadt Wien, MA 45, 60 ppGoogle Scholar
  37. Velimirov B, FischerUR, Mössler C, Nemetz-Wieltschnig C (2005) Sanierung Alte Donau, Limnologische Untersuchung – Zustandsanalyse des Sedimentes der Oberen und Unteren Alten Donau im August 2004, im Auftrag der MA 45Google Scholar
  38. Wolfram G Humpesch UH (eds) (2003) Neue Donau 2002. Die Auswirkungen unterschiedlich starker Hochwässer auf die Neue Donau. Studie im Auftrag der Stadt Wien, MA 45, und der VERBUND-Austrian Hydro Power AGGoogle Scholar
  39. Wolfram G, Humpesch UH, Dujmic A (eds) (2001) Neue Donau 2000: Kolmation. Studie im Auftrag der Stadt Wien, MA 45, und der VERBUND-Austrian Hydro Power AGGoogle Scholar
  40. Wolter K-D (1994) Phosphorus precipitation. In: Eiseltová M (ed) Restoration of lake ecosystems – a holistic approach, vol 32. IWRB Publication, Slimbridge, pp 63–69, ISBN 0-9505731-5-9Google Scholar
  41. Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjornland T, Repeta D, Welschmeyer NA (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Pror Ser 77:183–196CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DWS-Hydro-Ökologie GmbH, Technisches Büro für Ökologie und LandschaftsplanungWienAustria
  2. 2.DWS-Hydro-Ökologie GmbHWienAustria

Personalised recommendations