Phytoplankton Photosynthesis and Production

  • Martin T. DokulilEmail author
  • Wilfried Kabas
Part of the Aquatic Ecology Series book series (AQEC, volume 10)


Productivity of aquatic vegetation determines the trophic level of any freshwater ecosystem. Phytoplankton photosynthetic rates are particularly relevant. Results are reported here on photosynthetic rates, primary productivity and associated parameters of phytoplankton from a polymictic, groundwater seepage lake in an urban environment before, during and after restoration measures. In addition, a simple regression model is presented to approximate daily column production from column integrated chlorophyll-a measurements. Calculated and estimates phytoplankton annual lake production is compared to production by submerged vascular plants. Results indicate that macrophytes played an essential role during the clear water phase preceding the eutrophication phase associated with intense algal productivity and vanishing submersed plant production. Internal restoration measures led to rapidly decreasing phytoplankton production and slowly re-appearing macrophytes. The rehabilitation phase following this period was characterized by declining phytoplankton productivity and re-establishing of macrophyte production. Total lake production as the sum of phytoplankton and macrophyte production declined from 626 t C to 186 t C during 1993–1996 mainly as a result of declining plankton production. During rehabilitation phytoplankton production further declined and macrophyte production regained importance. The interannual variability was ascribed to changes in the winter North Atlantic Oscillation Index. The index significantly correlated with lake production explaining 48% of the variability.


Productivity Model Algae Submersed production Vascular plants Phytoplankton 



The authors acknowledge the continuous support from the Municipal Department – 45 (Water Management – Vienna) and the University of Vienna for providing laboratory space. Moreover thanks to the many collaborators during this long-term study.


  1. Dokulil M (1984) Assessment of components controlling phytoplankton photosynthesis and bacterioplankton production in a shallow, alkaline turbid lake (Neusiedler see, Austria). Int Rev Gesamten Hydrobiol 69:679–727CrossRefGoogle Scholar
  2. Dokulil MT (2009) Comparative primary production. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Elsevier, Oxford, pp 130–137CrossRefGoogle Scholar
  3. Dokulil MT (2014a) Photoautotrophic productivity in eutrophic ecosystems. In: Ansari AA, Gill SS (eds) Eutrophication: causes, consequences and control, vol 2. Springer, Dordrecht, pp 99–109CrossRefGoogle Scholar
  4. Dokulil MT (2014b) Old wine in new skins: eutrophication reloaded: global perspectives of potential amplification by climate warming, altered hydrological cycle and human interference. In: Lambert A, Roux C (eds) Eutrophication: causes, economic implications and future challenges. Hauppauge/Nova Publishers, New York, pp 95–125Google Scholar
  5. Dokulil MT (2015) Vegetative survival of Cylindrospermopsis raciborskii (Cyanobacteria) at low temperature and low light. Hydrobiologia 764:1–7Google Scholar
  6. Dokulil MT, Kaiblinger C (2009) Phytoplankton productivity. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Elsevier, Oxford, pp 210–218CrossRefGoogle Scholar
  7. Dokulil MT, Teubner K, Kaiblinger C (2005) Produktivität aquatischer Systeme. Primärproduktion (autotrophe Produktion). In: Steinberg C, Calmano W, Klapper H, Wilken R-D (eds) Handbuch angewandte Limnologie IV-9.2, 21. Erg. Lfg, 4/05, ecomed, Landsberg, pp 1–30Google Scholar
  8. Dokulil MT, Donabaum K, Pall K (2006) Alternative stable states in floodplain ecosystems. Ecohydrol Hydrobiol 6:37–42CrossRefGoogle Scholar
  9. Dokulil MT, Donabaum K, Pall K (2011) Successful restoration of a shallow Lake: a case study based on Bistable theory. In: Ansari AA, Gill SS, Lanza GR, Rast W (eds) Eutrophication: causes, consequences and control. Springer, Dordrecht, pp 285–294Google Scholar
  10. Esteves BS, Suzuki MS (2010) Limnological variables and nutritional content of submerged aquatic macrophytes in a tropical lagoon. Acta Limnol Bras 22:187–198CrossRefGoogle Scholar
  11. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, p 488Google Scholar
  12. Gervais F, Behrendt H (2003) Primary productivity in a polymictic lake – temporal dynamics, controlling factors and trophic state. Int Rev Hydrobiol 88:16–33CrossRefGoogle Scholar
  13. ISO 10260, International Standard (1992) Water quality – measurement of biochemical parameters – spectrophotometric determination of the chlorophyll-a concentration. International Organization for Standardization, GenevaGoogle Scholar
  14. Kabas W (1997) Änderung der Trophie der Alten Donau während und nach den Sanierungsmaßnahmen in den Jahren 1995 und 1996. Primärproduktion (14C) und Saisonalität des Phytoplanktons. Master thesis, University of ViennaGoogle Scholar
  15. Kabas W (2004) Die Veränderungen der Primärproduktion in der Alten Donau in den Jahren 1995–2002. Mit einem Methodenvergleich. PhD thesis, University of ViennaGoogle Scholar
  16. Lewis WM Jr (2011) Global primary production of lakes: 19th Baldi memorial lecture. Inland Waters 1:1–28CrossRefGoogle Scholar
  17. Löffler H (1988) Alte Donau. Projektstudie im Auftrag der Wasserstrassendirektion. Wien, 272 pGoogle Scholar
  18. Rivas K (1993) Field and laboratory experiments of photosynthetic rates of phytoplankton. Research Report, Institute of Limnollogy. MondseeGoogle Scholar
  19. Roschitz E (1996) Sukzession und Produktion in der Alten Donau vor und nach der Sanierung. Master thesis, University of ViennaGoogle Scholar
  20. Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19:1637–1670CrossRefGoogle Scholar
  21. Teubner K, Dokulil M (2002) 14C-Photosynthesis of phytoplankton in an oligotrophic alpine lake (Traunsee, Austria) and its response to turbidity caused by industrial tailings. Water Air Soil Pollut Focus 2:181–190CrossRefGoogle Scholar
  22. Teubner K, Sarobe A, Vadrucci MR, Dokulil M (2001) 14C photosynthesis and pigment pattern of phytoplankton as size related adaptation strategies in alpine lakes. Aquat Sci 63:310–325CrossRefGoogle Scholar
  23. Teubner K, Crosbie N, Donabaum K, Kabas W, Kirschner A, Pfister G, Salbrechter M, Dokulil MT (2003) Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton. Limnol Oceanogr 48(3):1141–1149CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DWS-Hydro-Ökologie GmbHWienAustria
  2. 2.WienAustria

Personalised recommendations