Advertisement

Concepts for Restoration: Nutrient Loading, Thresholds and Alternative Stable States

  • Martin T. DokulilEmail author
  • Karl Donabaum
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 10)

Abstract

Shallow groundwater seepage lakes are difficult to manage and to restore once they are eutrophied. Effective management and rehabilitation of such lakes need strict and systematic planning based on solid concepts. The model most commonly used for eutrophication is the nutrient loading concept which relies on the limiting nutrient theory. Although not particularly designed for lakes primarily dependent on groundwater, nutrient loading models can be adapted and used to investigate the nutrient input and nutrient balance from the aquifer. These models can also be used to make predictions and to calculate thresholds or limits which must be reached to improve water quality. The theory of alternative stable states provides another excellent concept. Clear water, macrophyte dominated stages can switch to turbid conditions characterized by high algal concentrations. Such forward switches are often associated with anthropogenic pressure or changes in the hydrological regime. Recreational activities often enhance eutrophication processes resulting in a system collapse and an almost spontaneous switch to an alternative state. Backward shift to the original, macrophyte dominated stage can be difficult to attain. Return times are often prolonged due to hysteresis as a result of resilience. Concepts are outlined in general and then specified for the ecosystem in question.

Keywords

Eutrophication Cyanobacteria Blooms Rehabilitation Bistable theory Shallow lake 

Notes

Acknowledgments

This study was supported by several grants from the Municipal Department – 45 (Water Management – Vienna). We would like to thank all of the numerous collaborators and the Municipal Department for permission of publication.

References

  1. Baker WL, Walford GM (1995) Multiple stable states and models of riparian vegetation succession on the Animas River, Colorado. Ann Assoc Am Geogr 85:320–338CrossRefGoogle Scholar
  2. Bertness MD, Trussel G, Ewanchuk P, Silliman BR (2002) Do alternate community stable states exist on rocky shores in the Gulf of Maine? Ecology 83:3434–3448CrossRefGoogle Scholar
  3. Blindow I (1992) Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshw Biol 28:15–27CrossRefGoogle Scholar
  4. Blindow I, Andersson G, Hargeby A, St J (1993) Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshw Biol 30:159–167CrossRefGoogle Scholar
  5. Blindow I, Hargeby A, Anderson G (1997) Alternative stable states in shallow lakes: what causes a shift? In: Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 353–360Google Scholar
  6. Brett MT, Benjamin MM (2008) A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshw Biol 53:194–211Google Scholar
  7. Conell JH, Sousa WP (1983) On the evidence needed to judge ecological stability or persistence. Am Nat 121:789–824CrossRefGoogle Scholar
  8. Dillon PJ, Rigler FH (1975) A simple method for predicting the capacity of a lake for development based on lake trophic status. J Fish Res Board Can 32:1519–1531CrossRefGoogle Scholar
  9. Dokulil MT, Janauer GA (2000) Alternative stable states of macrophytes versus phytoplankton in two interconnected impoundments of the New Danube (Vienna, Austria), Archiv für Hydrobiologie. Supplement 135 (Large Rivers 12):75–83CrossRefGoogle Scholar
  10. Dokulil MT, Teubner K (2003) Eutrophication and restoration in shallow lakes – the concept of stable equilibria revisited. Hydrobiologia 506-509:9–35CrossRefGoogle Scholar
  11. Dokulil MT, Dirry P, Pall K, Janauer G, Knoll A, Mayer J (1994) Limnologische Untersuchung der Alten Donau. Zustandsanalyse des freien Wassers und des Sedimentes im Jahr 1994. Projektendbericht an die Wasserstraßendirektion und die MA 45-Wasserbau, 98 SGoogle Scholar
  12. Dokulil MT, Chen W, Cai Q (2000a) Anthropogenic impacts to large lakes in China: the Tai Hu example. Aquat Ecosyst Health Manage 3:81–94CrossRefGoogle Scholar
  13. Dokulil MT, Schwarz K, Jagsch A (2000b) Die Reoligotrophierung österreichischer Seen: Sanierung, Restaurierung und Nachhaltigkeit – Ein Überblick. Münchener Beiträge Abwasser-, Fischerei- und Flußbiologie 53:307–321Google Scholar
  14. Dokulil MT, Donabaum K, Pall K (2006) Alternative stable states in floodplain ecosystems. Ecohydrol Hydrobiol 6:37–42CrossRefGoogle Scholar
  15. Dokulil MT, Donabaum K, Pall K (2011) Successful restoration of a Shallow Lake: a case study based on bistable theory. In: Ansari AA, Gill SS, Lanza GR, Rast W (eds) Eutrophication: causes, consequences and control. Springer, Dordrecht, pp 285–294.  https://doi.org/10.1007/978-90-481-9625-8_1 CrossRefGoogle Scholar
  16. Donabaum K, Schagerl M, Dokulil MT (1999) Integrated lake management to restore macrophyte domination. Hydrobiologia 395(396):87–97CrossRefGoogle Scholar
  17. Donabaum K, Pall K, Teubner K, Dokulil MT (2004) Alternative stable states, resilience and hysteresis during recovery from eutrophication – a case study. SIL-News 43:1–4 (http://www.limnology.org/news/silnews43.pdf)Google Scholar
  18. Gunderson L, Holling CS, Pritchard L, Peterson GD (2002) Resilience. In: Mooney HA, Canadell JG (eds) Encyclopedia of global environmental change, vol. 2:the earth system: biological and ecological dimensions of global environmental. Wiley, Chichester ISBN 0–471–97796-9)Google Scholar
  19. Håkanson L (1999) On the principles and factors determining the predictive success of ecosystem models, with a focus on lake eutrophication models. Ecol Model 121:139–160CrossRefGoogle Scholar
  20. Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1997 and 1989. Prog Oceanogr 47:103–145CrossRefGoogle Scholar
  21. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Systemat 4:1–23CrossRefGoogle Scholar
  22. Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C, Jaksíc F, Kelt DA, Lemíc M, Lima M, López BC, Meserve PL, Milstead WB, Polis GA, Previtali MA, Richter M, Sbaté S, Squeo FA (2006) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ 4:87–95CrossRefGoogle Scholar
  23. Hosper SH (1998) Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes. In: The Netherlands. Water Sci Technol 37:151–164CrossRefGoogle Scholar
  24. Hughes TP (1994) Catastrophes, phase shifts, and largescale degradation of a Caribbean coral reef. Science 265:1547–1551CrossRefGoogle Scholar
  25. Jagsch A, Gassner H, Dokulil MT (2002) Long-term changes of environmental variables in Traunsee, an oligotrophic lake impacted by salt industry. Water Air Soil Pollut Focus 2:9–20CrossRefGoogle Scholar
  26. Janse JH, De Senerpont Domis LN, Scheffer M, Lijklemac L, Van Liere L, Klinge M, Mooij WM (2008) Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake. Limnologica 38:203–219CrossRefGoogle Scholar
  27. Jasinski JPP, Asselin H (2004) Alternative view of alternative stable states. Front Ecol Environ 2:10–11CrossRefGoogle Scholar
  28. Jasinski JPP, Payette S (2005) The creation of alternative stable states in the southern boreal forest, Quebec, Canada. Ecol Monogr 75:561–583CrossRefGoogle Scholar
  29. Jeppesen E, Jensen JP, Kristensen P, Sondergaard M, Mortensen E, Sortkjaer O, Olrik K (1990) Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 2. Threshold levels, long term stability and conclusions. Hydrobiologia 200:219–227CrossRefGoogle Scholar
  30. Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (1997) The structuring role of submerged macrophytes in lakes. In: Ecological studies, vol 131. Springer, New York/Berlin/HeidelbergGoogle Scholar
  31. Jeppesen E, Søndergaard M, Jensen JP, Havens K, Anneville O, Carvalho L, Coveney MF, Deneke R, Dokulil MT, Foy B, Gerdeaux D, Hampton SE, Kangur K, Köhler J, Körner S, Lammens E, Lauridsen TL, Manea M, Miracle R, Moss B, Nöges P, Persson G, Phillips G, Portielje R, Romo S, Schelske CL, Straile D, Tatrai I, Willén E, Winder M (2005) Lake responses to reduced nutrient loading – an analysis of contemporary long term data from 35 case studies. Freshw Biol 50:1747–1771CrossRefGoogle Scholar
  32. Jones JR, Bachmann RW (1976) Prediction of phosphorus and chlorophyll levels in lakes. J Water Pollut Control Fed 48:2176–2182Google Scholar
  33. Knowlton N (1992) Thresholds and multiple stable states in coral reef community dynamics. Am Zool 32:674–682CrossRefGoogle Scholar
  34. Lewontin RC (1969) The meaning of stability. Brookhaven Symp Biol F 22:13–24Google Scholar
  35. Löffler H (1988) Alte Donau. Projektstudie im Auftrag der Wasserstrassendirektion. Im Eigenverlag, Wien, 272 SGoogle Scholar
  36. Moss B, Stansfield J, Irvine K, Perrow M, Phillips G (1996) Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. J Appl Ecol 33:71–86CrossRefGoogle Scholar
  37. Moss B, Madgwick J, Phillips G (1997) A guide to the restoration of nutrient-rich shallow lakes. Broads Authority, NorwichGoogle Scholar
  38. Nachtnebel HP, Fürst J (1998) Wasserbilanz der Alten Donau. Bericht an die Magistratsabteilung 45, Wien, 287 SGoogle Scholar
  39. Nürnberg GK (1998) Prediction of annual and seasonal phosphorus concentrations in stratified and polymictic lakes. Limnol Oceanogr 43:1544–1552CrossRefGoogle Scholar
  40. Peterson CH (1984) Does a rigorous criterion for environmental identity preclude the existence of multiple stable points? Am Nat 124:127–133CrossRefGoogle Scholar
  41. Petraites PS, Latham RE (1999) The importance of scale in testing the origins of alternative stable states with examples from marine and terrestrial ecosystems. Ecology 80:429–442CrossRefGoogle Scholar
  42. Rast W, Thornton JA (2005) The phosphorus loading concept and the OECD eutrophication programme: origin, application and capabilities. In: O’Sullivan PE, Reynolds CS (eds) The lakes handbook, vol. 2 Lake restoration and rehabilitation. Blackwell Science, Malden, pp 354–385Google Scholar
  43. Riedler P, Wolfram G, Donabaum K (2007) Stoffbilanz Alte Donau 2003–2005. DWS Hydro-Ökologie, Bericht 06/013-B01, Magistratsabteilung 45, Wien, 70 SGoogle Scholar
  44. Rietkerk MS, Dekker C, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929CrossRefGoogle Scholar
  45. Scheffer M (1990) Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201:475–486CrossRefGoogle Scholar
  46. Scheffer M (1991) On the predictability of aquatic vegetation in shallow lakes. Memorie dell’Istituto Italiano di Idrobiologia 48:207–217Google Scholar
  47. Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, LondonGoogle Scholar
  48. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656CrossRefGoogle Scholar
  49. Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279CrossRefGoogle Scholar
  50. Scheffer M, Carpenter SR, Foley JA, Folkes C, Walker B (2001a) Catastrophic shifts in ecosystems. Nature 41:591–596CrossRefGoogle Scholar
  51. Scheffer M, Straile D, van Nes EH, Hosper H (2001b) Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–1783CrossRefGoogle Scholar
  52. Scheffer M, Rinaldi S, Huisman J, Weising FJ (2003) Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491:9–18CrossRefGoogle Scholar
  53. Schröder A, Persson L, De Roos AM (2005) Direct experimental evidence for alternative stable states: a review. Oikos 110:3–19CrossRefGoogle Scholar
  54. Sedia E, Ehrenfeld J (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100:447–458CrossRefGoogle Scholar
  55. Sousa WP (1984) The role of disturbances in natural communities. Annu Rev Ecol Systemat 15:353–391CrossRefGoogle Scholar
  56. Steele JH (1998) Regime shifts in marine ecosystems. Ecol Appl 8:S33–S36CrossRefGoogle Scholar
  57. Sutherland JP (1974) Multiple stable points in natural populations. Am Nat 108:859–873CrossRefGoogle Scholar
  58. Teubner K (1996) Struktur und Dynamik des Phytoplanktons in Beziehung zur Hydrochemie und Hydrophysik der Gewässer: Eine multivariate statistische Analyse an ausgewählten Gewässern der Region Berlin-Brandenburg. Ph.D thesis, Department of Ecophysiology, Humboldt University Berlin, 232 ppGoogle Scholar
  59. Teubner K (2000) Synchronised changes of planktonic cyanobacterial and diatom assemblages in North German waters reduce seasonality to two principal periods. Arch Hydrobiol Spec Iss Adv Limnol 55:564–580Google Scholar
  60. Teubner K. and Dokulil MT (2000) Statistische Langzeitanalyse österreichischer Seen. Endbericht zum Jubiläumsfonds-Projekt 6762, 10 SGoogle Scholar
  61. Uhlmann D (1980) Stability and multiple steady states of hypereutrophic ecosystems. In: Barica J, Mur R (eds) Hypertrophic ecosystems. Developments in hydrobiology, vol 2. Springer, Dordrecht, pp 235–247CrossRefGoogle Scholar
  62. Van de Koppel J, Herman PMJ, Thoolen P, Heip CHR (2001) Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:3449–3461CrossRefGoogle Scholar
  63. Van Nes EH, Scheffer M (2005) Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86:1797–1807CrossRefGoogle Scholar
  64. Van Nes EH, Rip WJ, Scheffer M (2007) A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems 10:17–27Google Scholar
  65. Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical report DAS/CSI/68.27, OECD, Paris, 159 ppGoogle Scholar
  66. Vollenweider RA (1975) Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz Z Hydrol 37:53–84Google Scholar
  67. Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 33:53–83Google Scholar
  68. Vollenweider RA, Dillon PJ (1974) The application of the phosphorus loading concept to eutrophication research. Report NRCC No. 13690, Burlington, Canada, 54 ppGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DWS-Hydro-Ökologie GmbHWienAustria

Personalised recommendations