Advertisement

Puzzles and Mathematics

  • Marcel Danesi
Chapter
Part of the Mathematics in Mind book series (MATHMIN)

Abstract

The English word puzzle covers a broad range of meanings, alluding to everything from riddles and crosswords to Sudoku, optical illusions, and difficult conundrums in advanced mathematics. As a generic categorical label, it is a convenient one for classifying diverse manifestations of what is arguably a singular psychological phenomenon, which can be called the ludic mind, that is, a mind that grasps or models ideas through some form of creative intellectual play. The word puzzle was first used to describe a game in a forgotten book published by a certain Abram Kendall around 1595, titled The Voyage of Robert Dudley Afterwards Styled Earl of Warwick & Leicester and Duke of Northumberland (Warner 2015). It derives from the Middle English word poselen “to bewilder, confuse,” a definition that certainly can be applied to most of the classic mathematical puzzles.

References

  1. Abbott, Edwin (2002 [1884]). The Annotated Flatland: A Romance of Many Dimensions. Introduction and Notes by Ian Stewart. New York: Basic Books.Google Scholar
  2. Adam, John A. (2004). Mathematics in Nature: Modeling Patterns in the Natural World. Princeton: Princeton University Press.Google Scholar
  3. Alexander, James (2012). On the Cognitive and Semiotic Structure of Mathematics. In: M. Bockarova, M. Danesi, and R. Núñez (eds.), Semiotic and Cognitive Science Essays on the Nature of Mathematics, pp. 1–34. Munich: Lincom Europa.Google Scholar
  4. Al-Khalili, Jim (2012). Paradox: The Nine Greatest Enigmas in Physics. New York: Broadway.Google Scholar
  5. Andrews, William S. (1960). Magic Squares and Cubes. New York: Dover.MATHGoogle Scholar
  6. Auble, Pamela, Franks, Jeffrey and Soraci, Salvatore (1979). Effort Toward Comprehension: Elaboration or Aha !?Memory & Cognition 7: 426–434.CrossRefGoogle Scholar
  7. Ascher, Marcia (1990). A River-Crossing Problem in Cross-Cultural Perspective. Mathematics Magazine 63: 26–29.MathSciNetMATHCrossRefGoogle Scholar
  8. Averbach, Bonnie and Chein, Orin (1980). Problem Solving Through Recreational Mathematics. New York: Dover.MATHGoogle Scholar
  9. Bachet, Claude-Gaspar (1984). Problèmes plaisans et délectables qui se font par les nombres. Lyon: Gauthier-Villars.Google Scholar
  10. Ball, W. W. Rouse (1972). Mathematical Recreations and Essays, 12th edition, revised by H. S. M. Coxeter. Toronto: University of Toronto Press.Google Scholar
  11. Banks, Robert S. (1999). Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics. Princeton: Princeton University Press.MATHGoogle Scholar
  12. Barwise, Jon and Etchemendy, John (1986). The Liar. Oxford: Oxford University Press.MATHGoogle Scholar
  13. Bashmakova, Isabella G. (1997). Diophantus and Diophantine Equations. Washington, D.C.: Mathematical Association of America.MATHGoogle Scholar
  14. Basin, S. L. (1963). The Fibonacci Sequence as It Appears in Nature. The Fibonacci Quarterly, 1 (1963), 53–64.MATHGoogle Scholar
  15. Benjamin, Arthur, Chartrand, Gary, and Zhang, Ping (2015). The Fascinating World of Graph Theory. Princeton: Princeton University Press.MATHCrossRefGoogle Scholar
  16. Benson, Donald C. (1999). The Moment of Proof: Mathematical Epiphanies. Oxford: Oxford University Press.MATHGoogle Scholar
  17. Bennett, G. T. (1910). The Eight Queens Problem. Messenger of Mathematics 39: 19.Google Scholar
  18. Bergin, Thomas G. and Fisch, Max (eds. and trans.) (1984). The New Science of Giambattista Vico. Ithaca: Cornell University Press.Google Scholar
  19. Berlinski, David (2013). The King of Infinite Space: Euclid and His Elements. New York: Basic Books.Google Scholar
  20. Biggs, N. L. (1979). The Roots of Combinatorics. Historia Mathematica 6: 109-136.MathSciNetMATHCrossRefGoogle Scholar
  21. Bohning, Gerry and Althouse, Jody K. (1997). Using Tangrams to Teach Geometry to Young Children. Early Childhood Education Journal 24: 239–242.CrossRefGoogle Scholar
  22. Bor, Daniel (2012). The Ravenous Brain: How the New Science of Consciousness Explains Our Insatiable Search for Meaning. New York: Basic Books.Google Scholar
  23. Borovkov, Alexander A. (2013). Probability Theory. New York: Springer.MATHCrossRefGoogle Scholar
  24. Bronowski, Jacob (1973). The Ascent of Man. Boston: Little, Brown, and Co.Google Scholar
  25. Bronowski, Jacob (1977). The Ascent of Man. Boston: Little, Brown, and Co.Google Scholar
  26. Brooke, Maxey (1969). 150 Puzzles in Crypt-Arithmetic. New York: Dover.Google Scholar
  27. Bruno, Giuseppe, Genovese, Andrea, and Improta, Gennaro (2013). Routing Problems: A Historical Perspective. In: M. Pitici (ed.), The Best Writing in Mathematics 2012. Princeton: Princeton University Press.Google Scholar
  28. Burkholder, Peter (1993). Alcuin of York’s Propositiones ad acuendos juvenes: Introduction, Commentary & Translation. History of Science & Technology Bulletin, Vol. 1, number 2.Google Scholar
  29. Butterworth, Brian (1999). What Counts: How Every Brain is Hardwired for Math. Michigan: Free Press.MATHGoogle Scholar
  30. Cantor, Georg (1874). Über eine Eigneschaft des Inbegriffes aller reelen algebraischen Zahlen. Journal für die Reine und Angewandte Mathematik 77: 258–262.Google Scholar
  31. Cardano, Girolamo (1663 [1961]). The Book on Games of Chance (Liber de ludo aleae). New York: Holt, Rinehart, and Winston.MATHGoogle Scholar
  32. Carl Sagan (1985). Contact. New York: Pocket Books.Google Scholar
  33. Carroll, Lewis (1860). A Syllabus of Plane Algebraical Geometry. Oxford University Notes.Google Scholar
  34. Carroll, Lewis (1879). Euclid and His Modern Rivals. London: Macmillan.MATHGoogle Scholar
  35. Carroll, Lewis (1880). Pillow Problems and a Tangled Tale. New York: Dover.Google Scholar
  36. Carroll, Lewis (1958a). The Game of Logic. New York: Dover.Google Scholar
  37. Carroll, Lewis (1958b). Mathematical Recreations of Lewis Carroll. New York: Dover.Google Scholar
  38. Cayley, Arthur (1854). On the Theory of Groups, as Depending on the Symbolic Equation θn = 1. Philosophical Magazine 7: 40–47Google Scholar
  39. Chaitin, Gregory J. (2006). Meta Math. New York: Vintage.MATHGoogle Scholar
  40. Changeux, Pierre (2013). The Good, the True, and the Beautiful: A Neuronal Approach. New Haven: Yale University Press.Google Scholar
  41. Chase, Arnold B. (1979). The Rhind Mathematical Papyrus: Free Translation and Commentary with Selected Photographs, Transcriptions, Transliterations and Literal Translations. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  42. Clark, Michael (2012). Paradoxes from A to Z. London: Routledge.Google Scholar
  43. Conrad, Axel, Hindrichs, Tanja, Morsy, Hussein, and Wegener, Ingo (1994). Solution of the Knight’s Hamiltonian Path Problem on Chessboards. Discrete Applied Mathematics 50: 125–134.MathSciNetMATHCrossRefGoogle Scholar
  44. Conway, John Horton (2000). On Numbers and Games. Natick, Mass.: A. K. Peters.Google Scholar
  45. Cook, William J. (2014). In Pursuit of the Traveling Salesman Problem. Princeton: Princeton University Press.MATHGoogle Scholar
  46. Costello, Matthew J. (1988). The Greatest Puzzles of All Time. New York: Dover.Google Scholar
  47. Crilly, Tony (2011). Mathematics. London: Quercus.MATHGoogle Scholar
  48. Cutler, Bill (2003). Solution to Archimedes’ Loculus. http://www.billcutlerpuzzles.com.
  49. Dalgety, James and Hordern, Edward (1999). Classification of Mechanical Puzzles and Physical Objects Related to Puzzles. In: Elwyn Berlekamp and Tom Rodgers (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 175–186. Natick, Mass.: A. K. Peters.Google Scholar
  50. Danesi, Marcel (2002). The Puzzle Instinct: The Meaning of Puzzles in Human Life. Bloomington: Indiana University Press.Google Scholar
  51. Danesi, Marcel (2003). Second Language Teaching: A View from the Right Side of the Brain. Dordrecht: Kluwer.CrossRefGoogle Scholar
  52. Danesi, Marcel (2016). Language and Mathematics: In Interdisciplinary Guide. Berlin: Mouton de Gruyter.MATHCrossRefGoogle Scholar
  53. Danforth, Samuel (1647). MDCXLVII, an Almanac for the Year of Our Lord 1647. ProQuest 2011.Google Scholar
  54. Darling, David (2004). The Universal Book of Mathematics: From Abracadabra to Zeno’s Paradoxes. New York: John Wiley and Sons.De Bono, Edward (1970). Lateral Thinking: Creativity Step-by-Step. New York: Harper & Row.Google Scholar
  55. Davis, Paul J. and Hersh, Reuben (1986). Descartes’ Dream: The World according to Mathematics. Boston: Houghton Mifflin.MATHGoogle Scholar
  56. Dawkins, Richard (1976). The Selfish Gene. Oxford: Oxford University Press.Google Scholar
  57. De Bono, Edward (1970). Lateral Thinking: Creativity Step-by-Step. New York: Harper & Row.Google Scholar
  58. De Grazia, Joseph (1981). Math Tricks, Brain Twisters & Puzzles. New York: Bell Publishing Company.Google Scholar
  59. Dehaene, Stanislas (1997). The Number Sense: How the Mind Creates Mathematics. Oxford: Oxford University Press.MATHGoogle Scholar
  60. Dehaene, Stanislas (2014). Consciousness and the Brain. New York: Penguin Books.Google Scholar
  61. De Morgan, Augustus (1872). A Budget of Paradoxes. Library of Alexandria.Google Scholar
  62. Derbyshire, John (2004). Prime Obsession: Bernhard Riemann and His Greatest Unsolved Problem in Mathematics. Washington: Joseph Henry Press.MATHGoogle Scholar
  63. Devlin, Keith (2000). The Math Gene: How Mathematical Thinking Evolved and Why Numbers Are Like Gossip. New York: Basic.MATHGoogle Scholar
  64. Devlin, Keith (2005). The Math Instinct. New York: Thunder’s Mouth Press.Google Scholar
  65. Devlin, Keith (2011). The Man of Numbers: Fibonacci’s Arithmetic Revolution. New York: Walker and Company.MATHGoogle Scholar
  66. Dorrie, Heinrich (1965). 100 Great Problems in Elementary Mathematics. New York: Dover.Google Scholar
  67. Dudeney, Henry E. (1917). Amusements in Mathematics. New York: Dover.Google Scholar
  68. Dudeney, Henry E. (1958). The Canterbury Puzzles and Other Curious Problems. New York: Dover.Google Scholar
  69. Dudeney, Henry E. (2016, reprint). 536 Puzzles and Curious Problems. New York: Dover.Google Scholar
  70. Dunlap, Richard A. (1997). The Golden Ratio and Fibonacci Numbers. Singapore: World Scientific.MATHCrossRefGoogle Scholar
  71. Du Sautoy, Marcus (2004). The Music of the Primes: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: HarperCollins.Google Scholar
  72. Eco, Umberto (1983). The Name of the Rose New York: Picador.Google Scholar
  73. Eco, Umberto (1989). The Open Work. Cambridge: Harvard University Press.MATHGoogle Scholar
  74. Eco, Umberto (1998). Serendipities: Language and Lunacy, translated by William Weaver. New York: Columbia University Press.CrossRefGoogle Scholar
  75. Elwes, Richard (2014). Mathematics 1001. Buffalo: Firefly.Google Scholar
  76. Erdös, Paul (1934). A Theorem of Sylvester and Schur. Journal of the London Mathematical Society 9: 282–288.MathSciNetMATHCrossRefGoogle Scholar
  77. Euclid (1956). The Thirteen Books of Euclid’s Elements, 3 Volumes. New York: Dover.MATHGoogle Scholar
  78. Fauconnier, Gilles and Turner, Mark (2002). The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. New York: Basic.Google Scholar
  79. Fibonacci, Leonardo (2002). Liber Abaci, trans. by L. E. Sigler. New York: Springer.MATHGoogle Scholar
  80. Flood, Robert and Wilson, Raymond (2011). The Great Mathematicians: Unravelling the Mysteries of the Universe. London: Arcturus.Google Scholar
  81. Fortnow, Lance (2013). The Golden Ticket: P, NP, and the Search for the Impossible. Princeton: Princeton University Press.MATHCrossRefGoogle Scholar
  82. Foulds, L. R. and Johnston, D. G. (1984). An Application of Graph Theory and Integer Programming: Chessboard Non-Attacking Puzzles. Mathematics Magazine 57: 95–104.MathSciNetMATHCrossRefGoogle Scholar
  83. Frege, Gottlob (1879). Begiffsschrift eine der Aritmetischen nachgebildete Formelsprache des reinen Denkens. Halle: Nebert.Google Scholar
  84. Freiberger, Marianne (2006). Flatland: A Review. Plus, https://plus.maths.org/content/flatland.Google Scholar
  85. Frey, Alexander H. and Singmaster, David (1982). Handbook of Cubic Math. Hillside, N.J.: Enslow.MATHGoogle Scholar
  86. Gale, David (1979). The Game of Hex and Brouwer Fixed-Point Theorem. The American Mathematical Monthly 86: 818–827.MathSciNetMATHCrossRefGoogle Scholar
  87. Gardner, Martin (1970). The Fantastic Combinations of John Conway’s New Solitaire Game “Life”. Scientific American 223: 120–123.CrossRefGoogle Scholar
  88. Gardner, Martin (1979a). Chess Problems on a Higher Plane, Including Images, Rotations and the Superqueen. Scientific American 240: 18–22.CrossRefGoogle Scholar
  89. Gardner, Martin (1979b). Aha! Insight! New York: Scientific American.Google Scholar
  90. Gardner, Martin (1982). Gotcha! Paradoxes to Puzzle and Delight. San Francisco: Freeman.Google Scholar
  91. Gardner, Martin (1994). My Best Mathematical and Logic Puzzles. New York: Dover.MATHGoogle Scholar
  92. Gardner, Martin (1997). The Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications. New York: Copernicus.MATHCrossRefGoogle Scholar
  93. Gardner, Martin (1998). A Quarter-Century of Recreational Mathematics. Scientific American 279: 68–75.CrossRefGoogle Scholar
  94. Gerdes, Paulus (1994). On Mathematics in the History of Sub-Saharan Africa,” Historia Mathematica 21: 23–45.MathSciNetMATHCrossRefGoogle Scholar
  95. Gessen, Masha (2009). Perfect Rigor: A Genius and the Mathematical Breakthrough of the Century. Boston: Houghton Mifflin Harcourt.MATHGoogle Scholar
  96. Gillings, Richard J. (1961). Think-of-a-Number: Problems 28 and 29 of the Rhind Mathematical Papyrus. The Mathematics Teacher 54: 97–102.Google Scholar
  97. Gillings, Richard J. (1962). Problems 1 to 6 of the Rhind Mathematical Papyrus. The Mathematics Teacher 55: 61–65.Google Scholar
  98. Gillings, Richard J. (1972). Mathematics in the Time of the Pharaohs. Cambridge, Mass.: MIT Press.MATHGoogle Scholar
  99. Gödel, Kurt (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, Teil I. Monatshefte für Mathematik und Physik 38: 173-189.MathSciNetMATHCrossRefGoogle Scholar
  100. Goldberg, E. and Costa, L. D. (1981). Hemispheric Differences in the Acquisition of Descriptive Systems. Brain and Language 14: 144–173.CrossRefGoogle Scholar
  101. Gosset, T. (1914). The Eight Queens Problem. Messenger of Mathematics 44: 48.MATHGoogle Scholar
  102. Hadley, John and Singmaster, David (1992). Problems to Sharpen the Young. Mathematics Gazette 76: 102–126.CrossRefGoogle Scholar
  103. Haken, Wolfgang (1977). Every Planar Map Is Four-Colorable. Illinois Journal of Mathematics 21: 429–567.MathSciNetMATHGoogle Scholar
  104. Haken, Wolfgang and Appel, Kenneth (1977). The Solution of the Four-Color-Map Problem. Scientific American 237: 108–121.MathSciNetGoogle Scholar
  105. Haken, Wolfgang and Appel, Kenneth (2002). The Four-Color Problem. In: D. Jacquette (ed.), Philosophy of Mathematics, pp. 193-208. Oxford: Blackwell.Google Scholar
  106. Hales, Thomas C. (1994). The Status of the Kepler Conjecture. The Mathematical Intelligencer 16: 47–58.MathSciNetMATHCrossRefGoogle Scholar
  107. Hales, Thomas C. (2000). Cannonballs and Honeycombs. Notices of the American Mathematical Society 47: 440-449.MathSciNetMATHGoogle Scholar
  108. Hales, Thomas C. (2005). A Proof of the Kepler Conjecture. Annals of Mathematics. Second Series 62: 1065–1185.MATHCrossRefGoogle Scholar
  109. Hales, Thomas C. and Ferguson, Samuel P. (2006). A Formulation of the Kepler Conjecture. Discrete & Computational Geometry 36: 21–69.MathSciNetMATHCrossRefGoogle Scholar
  110. Hales, Thomas C. and Ferguson, Samuel P. (2011). The Kepler Conjecture: The Hales-Ferguson Proof. New York: Springer.Google Scholar
  111. Hannas, Linda (1972). The English Jigsaw Puzzle, 1760–1890. London: Wayland.Google Scholar
  112. Hannas, Linda (1981). The Jigsaw Book: Celebrating Two Centuries of Jigsaw-Puzzling Round the World. New York: Dial.Google Scholar
  113. Hayan Ayaz, Izzetoglu, Meltem, Shewokis, Patricia, and Onaral, Banu (2012). Tangram Solved? Prefrontal Cortex Activation Analysis during Geometric Problem Solving. IEEE Conference Proceedings: 4724–4727.Google Scholar
  114. Heath, Thomas L. (1958). The Works of Archimedes with the Method of Archimedes. New York: Dover.MATHGoogle Scholar
  115. Hellman, Hal (2006). Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever. Hoboken: John Wiley.MATHGoogle Scholar
  116. Hersh, Reuben (1998). What Is Mathematics, Really? Oxford: Oxford University Press.MATHGoogle Scholar
  117. Hersh, Reuben (2014). Experiencing Mathematics. Washington, DC: American Mathematical Society.MATHGoogle Scholar
  118. Hesse, Hermann (1943). Magister Ludi (New York: Bantam).Google Scholar
  119. van Hiele, Pierre M. (1984). The Child’s Thought and Geometry. In: David Fuys, Dorothy Geddes, and Rosamond Tischler (eds.), English Translations of Selected Writings of Dina van Hiele-Geldof and P. M. van Hiele, pp. 243–252. Brooklyn: Brooklyn College of Education.Google Scholar
  120. Hilbert, David (1931). Die Grundlagen Der Elementaren Zahlentheorie. Mathematische Annalen 104: 485–494.MathSciNetMATHCrossRefGoogle Scholar
  121. Hinz, Andreas M., Klavzar, Sandi, Milutinovic, Uros, and Petr, Ciril (2013). The Tower of Hanoi: Myths and Maths. Basel: Birkhaüser.MATHCrossRefGoogle Scholar
  122. Hofstadter, Douglas (1979). Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books.MATHGoogle Scholar
  123. Hofstadter, Douglas and Sander, Emmanuel (2013). Surfaces and Essences: Analogy as the Fuel and Fire of Thinking. New York: Basic Books.Google Scholar
  124. Hooper, William (1782). Rational Recreations. London: L. Davis.Google Scholar
  125. Hovanec, Helene (1978). The Puzzlers’ Paradise: From the Garden of Eden to the Computer Age. New York: Paddington Press.Google Scholar
  126. Hudson, Derek (1954). Lewis Carroll: An Illustrated Biography. London: Constable.Google Scholar
  127. Huizinga, Johan (1938). Homo Ludens: A Study of the Play-Element in Human Culture. New York: Beacon Press.Google Scholar
  128. Hunter, J. A. H. (1965). Fun with Figures. New York: Dover.Google Scholar
  129. Isacoff, Stuart (2003). Temperament: How Music Became a Battleground for the Great Minds of Western Civilization. New York: Knopf.Google Scholar
  130. Izard, Veronique, Pica, Pierre, Pelke, Elizabeth S., and Dehaene, Stephen (2011). Flexible Intuitions of Euclidean geometry in an Amazonian Indigene Group. PNAS 108: 9782–9787.CrossRefGoogle Scholar
  131. Jung, Carl G. (1983). The Essential Jung. Princeton: Princeton University Press.Google Scholar
  132. Kant, Immanuel (2011 [1910]). Critique of Pure Reason, trans. J. M. D. Meiklejohn. CreateSpace Platform.Google Scholar
  133. Kasner, Edward and Newman, James R. (1940). Mathematics and the Imagination. New York: Simon and Schuster.Google Scholar
  134. Kershaw, Trina and Ohlsson, Stellan (2004). Multiple Causes of Difficulty in Insight: The Case of the Nine-Dot Problem. Journal of Experimental Psychology: Learning, Memory, and Cognition 30: 3–13.Google Scholar
  135. Kim, Scott (2016). What Is a Puzzle? scottkim.com.previewc40.carrierzone.com/thinkinggames/whatisapuzzle.
  136. Klarner, David A. (1967). Cell Growth Problems. Canadian Journal of Mathematics 19: 851-863.MathSciNetMATHCrossRefGoogle Scholar
  137. Klarner, David A. (ed.) (1981). Mathematical Recreations: A Collection in Honor of Martin Gardner. New York: Dover.MATHGoogle Scholar
  138. Kline, Morris (1985). Mathematics and the Search for Knowledge. Oxford: Oxford University Press.MATHGoogle Scholar
  139. Knuth, Donald E. (1974). Surreal Numbers. Boston: Addison-Wesley.MATHGoogle Scholar
  140. Kosslyn, Stephen M. (1983). Ghosts in the Mind’s Machine: Creating and Using Images in the Brain. New York: W. W. Norton.Google Scholar
  141. Kosslyn, Stephen M. (1994). Image and Brain. Cambridge, Mass.: MIT Press.Google Scholar
  142. Kraitchik, Maurice (1942). Mathematical Recreations. New York: W. W. Norton.MATHGoogle Scholar
  143. Kuhn, Thomas S. (1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
  144. Kurzweil, Ray (2012). How to Create a Mind: The Secret of Human Thought Revealed. New York: Viking.Google Scholar
  145. Lakoff, George and Núñez, Rafael (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being. New York: Basic Books.MATHGoogle Scholar
  146. Li, Yan and Du, Shiran 1987. Chinese Mathematics: A Concise History, translated by J. H. Crossley and A. W-C. Lun. Oxford: Oxford University Press.Google Scholar
  147. Livio, Mario (2002). The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. New York: Broadway Books.MATHGoogle Scholar
  148. Loyd, Sam (1914). Cyclopedia of Tricks and Puzzles. New York: Dover.Google Scholar
  149. Loyd, Sam (1952). The Eighth Book of Tan. New York: Dover.Google Scholar
  150. Loyd, Sam (1959–1960). Mathematical Puzzles of Sam Loyd, 2 volumes, compiled by Martin Gardner. New York: Dover.Google Scholar
  151. Lucas, Edouard A. (1882–1894). Récreations mathématiques, 4 vols. Paris: Gauthier-Villars.MATHGoogle Scholar
  152. Martin, Robert (2004). The St. Petersburg Paradox. In: The Stanford Encyclopedia. Stanford: Stanford University Press.Google Scholar
  153. Maor, Eli (1998). Trigonometric Delights. Princeton: Princeton University Press.MATHGoogle Scholar
  154. Margalit, Avishai and Bar-Hillel, M. (1983). Expecting the Unexpected. Philosophia 13: 337–344.CrossRefGoogle Scholar
  155. Matthews, William H. (1970). Mazes & Labyrinths: Their History & Development. New York: Dover.Google Scholar
  156. Merton, Robert K. and Barber, Elinor (2003). The Travels and Adventures of Serendipity: A Study in Sociological Semantics and the Sociology of Science. Princeton: Princeton University Press.Google Scholar
  157. Morrow, Glenn R. (1970). A Commentary on the First Book of Euclid’s Elements. Princeton: Princeton University PressGoogle Scholar
  158. Nave, Ophir, Neuman, Yair, Howard, Newton, and Perslovsky, L. (2014). How Much Information Should We Drop to Become Intelligent? Applied Mathematics and Computation 245: 261–264.CrossRefGoogle Scholar
  159. Netz, Reviel and Noel, William (2007). The Archimedes Codex: Revealing the Secrets of the World’s Greatest Palimpsest. London: Weidenfeld & Nicholson.Google Scholar
  160. Neugebauer, Otto and Sachs, Joseph (1945). Mathematical Cuneiform Texts. New Haven: American Oriental Society.MATHGoogle Scholar
  161. Neumann, John von (1958). The Computer and the Brain. New Haven: Yale University Press.Google Scholar
  162. Neuman, Yair (2007). Immune Memory, Immune Oblivion: A Lesson from Funes the Memorious. Progress in Biophysics and Molecular Biology 92: 258267.Google Scholar
  163. Neuman, Yair (2014). Introduction to Computational Cultural Psychology. Cambridge: Cambridge University Press.Google Scholar
  164. Nuessel, Frank (2013). The Representation of Mathematics in the Media. In: M. Bockarova, M. Danesi and R. Núñez (eds.), Semiotic and Cognitive Science Essays on the Nature of Mathematics, pp. 154-198. Munich: Lincom Europa.Google Scholar
  165. Northrop, Eugene (1944). Riddles in Mathematics. London: Penguin.MATHGoogle Scholar
  166. Ogilvy, C. (1956). Excursions in Mathematics. New York: Dover.Google Scholar
  167. Olivastro, Dominic (1993). Ancient Puzzles: Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam.Google Scholar
  168. O’Shea, Donal (2007). The Poincaré Conjecture. New York: Walker.MATHGoogle Scholar
  169. Pappas, Theoni (1991). More Joy of Mathematics. San Carlos: Wide World Publishing.Google Scholar
  170. Peet, Thomas E. (1923). The Rhind Papyrus. Liverpool: University of Liverpool Press.MATHGoogle Scholar
  171. Peirce, Charles S. (1931–1958). Collected Papers of Charles Sanders Peirce, ed. by C. Hartshorne, P. Weiss and A.W. Burks, vols. 1-8. Cambridge: Harvard University Press.Google Scholar
  172. Petkovic, Miodrag S. (2009). Famous Puzzles of Great Mathematicians. Providence, RI: American Mathematical Society.MATHCrossRefGoogle Scholar
  173. Phillips, Hubert (1966). Caliban’s Problem Book. New York: Dover.Google Scholar
  174. Plato (2004). The Republic, ed. by C. D. C. Reeve. Indianapolis: Hackett.Google Scholar
  175. Plato (2006). Meno, ed. by Dominic Scott. Cambridge: Cambridge University Press.Google Scholar
  176. Pohl, Ira (1967). A Method for Finding Hamiltonian Paths and Knight’s Tours. Communications of the ACM 10(7): 446–449.CrossRefGoogle Scholar
  177. Polya, George (1921). Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Mathematische Annalen 84: 149–160.MathSciNetMATHCrossRefGoogle Scholar
  178. Posamentier, Alfred S. and Lehmann, Ingmar (2007). The (Fabulous) Fibonacci Numbers. Amherst: Prometheus.MATHGoogle Scholar
  179. Pressman, Ian and Singmaster, David (1989). The Jealous Husbands and the Missionaries and Cannibals. The Mathematical Gazette 73: 73-81.MathSciNetCrossRefGoogle Scholar
  180. Read, Ronald C. (1965). Tangrams: 330 Tangram Puzzles New York: Dover.Google Scholar
  181. Richards, Dana (1999). Martin Gardner: A “Documentary.” In: E. Berlekamp and T. Rodgers (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 3-12. Natick, Mass.: A. K. Peters.Google Scholar
  182. Richeson, David S. (2008). Euler’s Gem: The Polyhedron Formula and the Birth of Topology. Princeton: Princeton University Press.MATHGoogle Scholar
  183. Rockmore, Dan (2005). Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers. New York: Vintage.MATHGoogle Scholar
  184. Roberts, Royston M. (1989). Serendipity: Accidental Discoveries in Science. New York: John Wiley.Google Scholar
  185. Robins, R. Gay and Shute, Charles C. D. (1987). The Rhind Mathematical Papyrus: An Ancient Egyptian Text. London: British Museum Publications Limited.MATHGoogle Scholar
  186. Rosenhouse, Jason and Taalman, Laura (2011). Taking Sudoku Seriously. Oxford: Oxford University Press.MATHGoogle Scholar
  187. Rucker, Rudy (1987). Mind Tools: The Five Levels of Mathematical Reality. Boston: Houghton Mifflin.MATHGoogle Scholar
  188. Russell, Bertrand (1918). The Philosophy of Logical Atomism. London: Routledge.Google Scholar
  189. Russell, Bertrand and Whitehead, Alfred North (1913). Principia mathematica. Cambridge: Cambridge University Press.MATHGoogle Scholar
  190. Sabbagh, Karl (2004). The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics. New York: Farrar, Strauss & Giroux.Google Scholar
  191. Schneider, Michael S. (1994). Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science. New York: Harper Collins.Google Scholar
  192. Schuh, Fred (1968). The Master Book of Mathematical Recreations. New York: Dover.MATHGoogle Scholar
  193. Schwenk, Allen J. (1991). Which Rectangular Chessboards Have a Knight’s Tour? Mathematics Magazine 64: 325–332.MathSciNetMATHCrossRefGoogle Scholar
  194. Shapiro, Stuart C. (1998). A Procedural Solution to the Unexpected Hanging and Sorites Paradoxes. Mind 107: 751–761.MathSciNetCrossRefGoogle Scholar
  195. Selvin, Steven (1975). A Problem in Probability (letter to the editor). American Statistician 29: 67.CrossRefGoogle Scholar
  196. Singmaster, David (1998). The History of Some of Alcuin’s Propositiones. In: P. L. Butzer, H. Th. Jongen, and W. Oberschelp (eds.), Charlemagne and His Heritage 1200 Years of Civilization and Science in Europe, Vol. 2, pp. 11–29. Brepols: Turnhout.Google Scholar
  197. Smolin, Lee (2013). Time Reborn: From the Crisis in Physics to the Future of the Universe. Boston: Houghton Mifflin Harcourt.Google Scholar
  198. Smullyan, Raymond (1978). What Is the Name of this Book? The Riddle of Dracula and Other Logical Puzzles. Englewood Cliffs, N.J.: Prentice-Hall.MATHGoogle Scholar
  199. Smullyan, Raymond (1979). The Chess Mysteries of Sherlock Holmes. New York: Knopf.Google Scholar
  200. Smullyan, Raymond (1982). Alice in Puzzle-Land. Harmondsworth: Penguin.Google Scholar
  201. Smullyan, Raymond (1997). The Riddle of Scheherazade and Other Amazing Puzzles, Ancient and Modern. New York: Knopf.Google Scholar
  202. Spalinger, Anthony (1990). The Rhind Mathematical Papyrus as a Historical Document. Studien zur Altägyptischen Kultur 17: 295–337Google Scholar
  203. Sternberg, Robert J. (1985). Beyond IQ: A Triarchic Theory of Human Intelligence. New York: Cambridge University Press.Google Scholar
  204. Stewart, Ian (1987). From Here to Infinity: A Guide to Today’s Mathematics. Oxford: Oxford University Press.MATHGoogle Scholar
  205. Stewart, Ian (2008). Taming the Infinite. London: Quercus.Google Scholar
  206. Stewart, Ian (2012). In Pursuit of the Unknown: 17 Equations That Changed the World. New York: Basic Books.MATHGoogle Scholar
  207. Strohmeier, John and Westbrook, Peter (1999). Divine Harmony: The Life and Teachings of Pythagoras. Berkeley, CA: Berkeley Hills Books.Google Scholar
  208. Swetz, Frank J. and Kao, T. I. 1977. Was Pythagoras Chinese? An Examination of Right-Triangle Theory in Ancient China. University Park: Pennsylvania State University Press.MATHGoogle Scholar
  209. Takagi, Shigeo (1999). Japanese Tangram: The Sei Shonagon Pieces. In: E. Berlekamp and T. Rodgers, (eds.), The Mathemagician and Pied Puzzler: A Collection in Tribute to Martin Gardner, pp. 97–98. Natick, Mass.: A. K. Peters.Google Scholar
  210. Tall, David (2013). How Humans Learn to Think Mathematically. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  211. Tarski, Alfred. (1933 [1983]). Logic, Semantics, Metamathematics, Papers from 1923 to 1938, John Corcoran (ed.). Indianapolis: Hackett Publishing Company.Google Scholar
  212. Taylor, Richard and Wiles, Andrew (1995). Ring-Theoretic Properties of Certain Hecke Algebras. Annals of Mathematics 141: 553–572.MathSciNetMATHCrossRefGoogle Scholar
  213. Thom, René (1975). Structural Stability and Morphogenesis: An Outline of a General Theory of Models. Reading: Benjamin.MATHGoogle Scholar
  214. Trigg, Charles W. (1978). What Is Recreational Mathematics? Mathematics Magazine 51: 18–21.MathSciNetCrossRefGoogle Scholar
  215. Turing, Alan (1936). On Computable Numbers with an Application to the Entscheidungs Problem. Proceedings of the London Mathematical Society 42: 230–265.MathSciNetMATHGoogle Scholar
  216. Tymoczko, Thomas (1979). The Four-Color Problem and Its Philosophical Significance. Journal of Philosophy 24: 57–83.CrossRefGoogle Scholar
  217. Uexküll, Jakob von (1909). Umwelt und Innenwelt der Tierre. Berlin: Springer.Google Scholar
  218. Vajda, Steven (1989). Fibonacci and Lucas Numbers, and the Golden Section, Chichester: Ellis Horwood.MATHGoogle Scholar
  219. Verene, Donald P. (1981). Vico’s Science of Imagination. Ithaca: Cornell University Press.Google Scholar
  220. Vernadore, J. (1991). Pascal’s Triangle and Fibonacci Numbers. The Mathematics Teacher 84: 314-316.Google Scholar
  221. Visser, Beth A., Ashton, Michael C., and Vernon, Philip A. (2006.) g and the Measurement of Multiple Intelligences: A Response to Gardner. Intelligence 34: 507–510.CrossRefGoogle Scholar
  222. Vorderman, Carol (1996). How Math Works. Pleasantville: Reader’s Digest Association.Google Scholar
  223. Warner, George F. (ed.) (2015). The Voyage of Robert Dudley Afterwards Styled Earl of Warwick & Leicester and Duke of Northumberland. Amazon: Scholar’s Choice.Google Scholar
  224. Warnsdorf, H. C. von (1823). Des Rösselsprunges einfachste und allgemeinste Lösung. Schmalkalden: Varnhagen.Google Scholar
  225. Watkins, John J. (2004). Across the Board: The Mathematics of Chess Problems. Princeton: Princeton University Press.MATHCrossRefGoogle Scholar
  226. Wells, David (1992). The Penguin Book of Curious and Interesting Puzzles. Harmondsworth: Penguin.MATHGoogle Scholar
  227. Wells, David (2005). Prime Numbers: the Most Mysterious Figures in Math. Hoboken: John Wiley.Google Scholar
  228. Wells, David (2012). Games and Mathematics: Subtle Connections. Cambridge: Cambridge University Press.MATHCrossRefGoogle Scholar
  229. Wildgen, Wolfgang and Brandt, Per Aage (2010). Semiosis and Catastrophes: René Thom’s Semiotic Heritage. New York: Peter Lang.Google Scholar
  230. Wiles, Andrew (1995). Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics. Second Series 141: 443–551.MathSciNetMATHCrossRefGoogle Scholar
  231. Willerding, Margaret (1967). Mathematical Concepts: A Historical Approach. Boston: Prindle, Weber & Schmidt.Google Scholar
  232. Williams, Anne D. (2004). The Jigsaw Puzzle: Piecing Together a History. New York: Berkley Books.Google Scholar
  233. Wilson, Robin (2002). Four Colors Suffice: How the Map Problem Was Solved. Princeton: Princeton University Press.MATHGoogle Scholar
  234. Wittgenstein, Ludwig (1922). Tractatus Logico-Philosophicus. London: Routledge and Kegan Paul.MATHGoogle Scholar
  235. Zadeh, Lofti A. (1965). Fuzzy Sets. Information and Control 8: 338–353.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marcel Danesi
    • 1
  1. 1.Department of AnthropologyUniversity of TorontoTorontoCanada

Personalised recommendations