Chlorophyll Fluorescence: A Practical Approach to Study Ecophysiology of Green Plants

  • Amarendra Narayan Mishra


Photosynthesis is the primary solar harvesting system on earth. The photosynthetic process absorbs solar energy and transduces into organic chemical bond energy. Light energy that is absorbed by photosynthetic pigments in chloroplasts elicits several competing processes out of which the process of photochemistry, and dissipated of heat or emitted as fluorescence emission are important for the measurement of quantum efficiency of photosynthesis. So, measuring any of these three will give a relative quantitative picture about the photosynthetic function of plants under a given environment. In the present review, the methods for measuring photosynthetic efficiency of plants through different fluorescence measurement techniques are ellucidated.


  1. Aguilera J, Jimenez C, Figueroa FL, Lebert M, Hader DP (1999) Effect of ultraviolet radiation on thallus absorption and photosynthetic pigments in the red alga Porphyra umbilicalis. J Photochem Photobiol B Biol 48:75–82CrossRefGoogle Scholar
  2. Albert KR, Mikkelsen TN, Ro-Poulsen H (2005) Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll-a fluorescence parameters from fluorescence transients. Physiol Plant 124:208–226CrossRefGoogle Scholar
  3. Apostolova E, Dobrikova AG, Rashkov GD, Dankov KG, Vladkova RS, Misra AN (2011) Prolonged sensitivity of immobilized thylakoid membranes in cross-linked matrix to atrazine. Sensors Actuators B 156:140–146CrossRefGoogle Scholar
  4. Apostolova EL, Rashkov G, Misra AN, Pouneva I, Dankov K (2014) Effect of UV-B radiation on photosystem II functions in Antarctic and mesophilic strains of a green alga Chlorella vulgaris and a cyanobacterium Synechocystis salina. Indian J Plant Physiol 19:111–118CrossRefGoogle Scholar
  5. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:659–668CrossRefGoogle Scholar
  6. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621PubMedCrossRefPubMedCentralGoogle Scholar
  7. Beneragama CK, Balasooriya BLHN, Perera TMRS (2014) Use of O-J-I-P chlorophyll fluorescence transients to probe multiple effects of UV-C radiation on the photosynthetic apparatus of Euglena. Int J Appl Sci Biotechnol 2:553–558CrossRefGoogle Scholar
  8. Bernat G, Steinbach G, Kaňa R, Govindjee MAN, Prašil O (2018) On the origin of the slow M–T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynth Res 136:183. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504PubMedCrossRefGoogle Scholar
  11. Boureima S, Oukarroum A, Diouf M, Cisse N, Van Damme P (2012) Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ Exp Bot 81:37–43CrossRefGoogle Scholar
  12. Brestic M, Zivcak M (2013) PSII Fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Molecular stress physiology of plants. Springer, Berlin, pp 87–131CrossRefGoogle Scholar
  13. Brestic M, Zivcak M, Kalaji MH, Carpentier R, Allakhverdiev SI (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brestic M, Zivcak M, Olsovska K, Repkova J (2013) Involvement of chlorophyll a fluorescence analyses for identification of sensitiveness of the photosynthetic apparatus to high temperature in selected wheat genotypes. In: Photosynthesis research for food, fuel and the future. Springer, Berlin, pp 510–513CrossRefGoogle Scholar
  15. Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271PubMedCrossRefPubMedCentralGoogle Scholar
  16. Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem II of chloroplasts. Biochim Biophys Acta 376:116–125PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ceppi MG, Oukarroum A, Cicek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen LS, Li P, Cheng L (2009) Comparison of thermotolerance of sun-exposed peel and shaded peel of ‘Fuji’ apple. Environ Exp Bot 66:110–116CrossRefGoogle Scholar
  19. Dankov K, Rashkov G, Misra AN, Apostolova EL (2014) Temperature sensitivity of photosystem II in isolated thylakoid membranes from fluridone treated pea leaves. Turk J Bot 39:420–428. CrossRefGoogle Scholar
  20. Demmig-Adams B, Gilmore AM, Adams WW III (1996) In vivo functions of carotenoids in higher plants. FASEB J 10:403–412PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dobrikova A, Vladkova R, Rashkov G, Busheva M, Taneva SG, Misra AN, Apostolova E (2009) Assessment of sensitivity of photosynthetic oxygen evolution and chlorophyll florescent parameters to copper for use in biosensors. C R Acad Bulg Sci 62:723–728Google Scholar
  22. Dudeja SS, Chaudhary P (2005) Fast chlorophyll fluorescence transient and nitrogen fixing ability of chickpea nodulation variants. Photosynthetica 43:253–259CrossRefGoogle Scholar
  23. Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102PubMedCrossRefPubMedCentralGoogle Scholar
  24. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, 484 ppGoogle Scholar
  25. Finazzi G, Johnson GN, Dall’Osto L, Zito F, Bonente G, Bassi R, Wollman FA (2006) Non-photochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45:1490–1498PubMedCrossRefGoogle Scholar
  26. Force L, Critchly C, Van Rensen JJS (2003) New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynth Res 78:17–33PubMedCrossRefGoogle Scholar
  27. Fracheboud Y, Leipner J (2003) The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: JR DE, PMA T (eds) Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic Publishers, Dordrecht, pp 125–150CrossRefGoogle Scholar
  28. Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395PubMedCrossRefGoogle Scholar
  29. Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580PubMedPubMedCentralCrossRefGoogle Scholar
  30. Giardi MT, Pace E (2005) Photosynthetic proteins for technological applications. Trends Biotech 23:257–263CrossRefGoogle Scholar
  31. Gomes MTG, da Luz AC, dos Santos MR, Batitucci MDCP, Silva DM, Falqueto AR (2012) Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci Hortic 142:49–56CrossRefGoogle Scholar
  32. Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 1–41CrossRefGoogle Scholar
  33. Guha A, Sengupta D, Reddy AR (2013) Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J Photochem Photobiol B 119:71–83PubMedCrossRefPubMedCentralGoogle Scholar
  34. Guisse B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (OKJIP) in heat stressed leaves. Arch Sci Geneve 48:147–160Google Scholar
  35. Han S, Tang N, Jiang H-X, Yang L-T, Li Y, Chen L-S (2009) CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176:143–153CrossRefGoogle Scholar
  36. He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot 66:270–278CrossRefGoogle Scholar
  37. Horton P, Ruba AV, Walters RG (1994) Regulation of light harvesting in green plants. Plant Physiol 106:415–420PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ilik P, Schansker G, Kotabova E, Vaczi P, Strasser RJ, Bartak M (2006) A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possesing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta 1757:12–20PubMedCrossRefPubMedCentralGoogle Scholar
  39. Janeczko A, Koscielniak J, Pilipowicz M, Szarek-Lukaszewska G, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298CrossRefGoogle Scholar
  40. Jedmowski C, Ashoub A, Brüggemann W (2013) Reactions of Egyptian landraces of Hordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescence transient analysis. Acta Physiol Plant 35:345–354CrossRefGoogle Scholar
  41. Jiang H–X, Tang N, Zheng J–G, Chen L-S (2009) Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biol 9:102PubMedPubMedCentralCrossRefGoogle Scholar
  42. Johnson GN, Yong AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679CrossRefGoogle Scholar
  43. Kalaji HM, Łoboda T (2007) Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ 53:511–516CrossRefGoogle Scholar
  44. Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli DB, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kalaji HM, Oukarroum A, Alexandrov V et al (2014a) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102CrossRefGoogle Scholar
  47. Kalaji HM, Schansker Brestic M, Bussotti F, Calatayud A, Ferroni L, Goltsev V, Guidi L, Jajoo A, Li P, Losciale P, Mishra VK, Misra AN, Nebauer SG, Pancaldi S, Pancaldi S, Penella C, Pollastrini M, Suresh K, Tambussi E, Yanniccari M, Zivcak M, Cetner MD, Samborska IA, Stirbet A, Olsovska K, Kunderlikova K, Shelonzek H, Rusinowski S, Baba W (2017a) Frequently asked questions about in vivo chlorophyll fluorescence, the sequel. Photosynth Res 132:13–66PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kalaji HM, Bąba W, Gediga K, Goltsev V, Samborska IA, Cetner MD, Dimitrova S, Piszcz U, Bielecki K, Karmowska K, Dankov K, Kompała-Bąba A (2017b) Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth Res 136:329. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensaure assimilation. Naturwissenschaften 19:964CrossRefGoogle Scholar
  50. Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromo-thymoquinone. Biochim Biophys Acta 376:105–115PubMedCrossRefPubMedCentralGoogle Scholar
  51. Koblizek M, Masojidek J, Komenda J, Kusera T, Pilloton R, Mattoo AK, Giardi MT (1998) A sensitive photosystem II based biosensor for detection of a class of herbicides. Biotech Bioenerg 60:664–669CrossRefGoogle Scholar
  52. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  53. Kruger GHT, Tsmilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camelia leaves. Physiol Plant 101:265–277CrossRefGoogle Scholar
  54. Latimer P, Bannister TT, Rabinowitch E (1956) Quantum yields of fluorescence of plant pigments. Science 124:585–586PubMedCrossRefGoogle Scholar
  55. Lauriano JA, Ramalho JC, Lidon FC, Ce’umatos M (2006) Mechanisms of energy dissipation in peanut under water stress. Photosynthetica 44:404–410CrossRefGoogle Scholar
  56. Laza’r D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30CrossRefGoogle Scholar
  57. Laza’r D, Jablonsky J (2009) On the approaches applied in formulation of a kinetic model of photosystem II: different approaches lead to different simulations of the chlorophyll a fluorescence transients. J Theor Biol 257:260–269CrossRefGoogle Scholar
  58. Li G, Zhang ZS, Gao HY, Liu P, Dong ST, Zhang JW, Zhao B (2012) Effects of nitrogen on photosynthetic characteristics of leaves from two different stay-green corn (Zea mays L.) varieties at the grain-filling stage. Can J Plant Sci 92:671–680CrossRefGoogle Scholar
  59. Liu WJ, Chen YE, Tian WJ, Du JB, Zhang ZW, Xu F, Zhang F, Yuan S, Lin HH (2009) Dephosphorylation of photosystem II proteins and phosphorylation of CP29 in barley photosynthetic membranes as a response to water stress. Biochim Biophys Acta 1787:1238–1245PubMedCrossRefGoogle Scholar
  60. Manes F, Donato E, Vitale M (2001) Physiological response of Pinus halepensis needles under ozone and water stress conditions. Physiol Plant 113:249–257PubMedCrossRefGoogle Scholar
  61. Mathur S, Mehta P, Jajoo A, Bharti S (2011a) Analysis of elevated temperature induced inhibition of Photosystem II using Chl a fluorescence induction kinetics. Plant Biol 13:1–6PubMedCrossRefGoogle Scholar
  62. Mathur S, Allakhverdiev SI, Jajoo A (2011b) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29PubMedCrossRefGoogle Scholar
  63. Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: limitations in response to high temperature stress. J Photochem Photobiol B Biol 137:116. CrossRefGoogle Scholar
  64. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668PubMedCrossRefPubMedCentralGoogle Scholar
  65. Maxwell DP, Falk S, Trick CG, Huner N (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20PubMedCrossRefPubMedCentralGoogle Scholar
  67. Misra AN, Terashima I (2003) Changes in photosystem activities during adaptation of Vicia faba seedlings to low, moderate and high temperatures. Plant cell physiology. In: Abstract, annual symposium JSPP, Nara, Japan 27–29 March 2003Google Scholar
  68. Misra AN, Srivastava A, Strasser RJ (2001a) Utilisation of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and brassica seedlings. J Plant Physiol 158:1173–1181CrossRefGoogle Scholar
  69. Misra AN, Srivastava A, Strasser RJ (2001b) Fast chlorophyll a fluorescence kinetic analysis for the assessment of temperature and light effects: a dynamic model for stress recovery phenomena. Photosynthsis: PS2001. CSIRO Publishers, Melbourne S3–007Google Scholar
  70. Misra AN, Latowski D, Strzalka K (2003) De-epoxidation state of lutein and violaxanthin in the seedlings of salt sensitive and salt tolerant plants grown under NaCl salt stress. Plant Biology, Honolulu, Hawaii, USA, 25–30 July 2003Google Scholar
  71. Misra AN, Latowski D, Strzalka K (2006) The xanthophylls cycle activity in kidney bean and cabbage leaves under salinity stress. Russ J Plant Physiol 53:102–109CrossRefGoogle Scholar
  72. Misra AN, Srivastava A and Strasser RJ (2007) Elastic and plastic responses of Vicia faba leaves to high temperature and high light stress. Gordon Conference on “Temperature stress in plants”, Ventura, USA 25–30 Jan 2007Google Scholar
  73. Misra AN, Latowski D, Strzalka K (2011) Violaxanthin de-epoxidation in aging cabbage (Brassica oleracea L.) leaves play as a sensor for photosynthetic excitation pressure. J Life Sci 5:182–191Google Scholar
  74. Misra AN, Misra M, Singh R (2012) Chlorophyll fluorescence in plant biology. In: Misra AN (ed) Biophysics. Intech Open, pp 171–192.
  75. Misra AN, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL (2014) Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 39:35–45PubMedCrossRefPubMedCentralGoogle Scholar
  76. Molassiotis A, Tanou G, Diamantidis G, Patakas A, Therios I (2006) Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J Plant Physiol 163:176–185PubMedCrossRefPubMedCentralGoogle Scholar
  77. Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566PubMedPubMedCentralCrossRefGoogle Scholar
  78. Niyogi KK, Bjorkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380PubMedPubMedCentralCrossRefGoogle Scholar
  79. Noomnarm U, Clegg R (2009) Fluorescence lifetimes: fundamentals and interpretations. Photosynth Res 101:181–194PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nussbaum S, Geissmann M, Eggenberg P, Strasser RJ, Fuhrer J (2001) Ozone sensitivity in herbaceous species as assessed by direct and modulated chlorophyll fluorescence techniques. J Plant Physiol 158:757–766CrossRefGoogle Scholar
  81. Oukarroum A, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and rewatering. Environ Exp Bot 60:438–446CrossRefGoogle Scholar
  82. Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant 137:188–199PubMedCrossRefPubMedCentralGoogle Scholar
  83. Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components: calculation of qP and Fv’/Fm’ without measuring Fo. Photosynth Res 54:135–142CrossRefGoogle Scholar
  84. Öz MT, Turan Ö, Kayihan C, Eyidoğan F, Ekmekçi Y, Yücel M, Öktem HA (2014) Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test. Photosynthetica 52:555–563CrossRefGoogle Scholar
  85. Paoletti E, Bussotti F, Della Rocca G, Lorenzini G, Nali C, Strasser RJ (2004) Fluorescence transient in ozonated Mediterranean shrubs. Phyton Annales Rei Botanicae 44:121–131Google Scholar
  86. Rabinowitch E, Govindjee (1969) Photosynthesis. Wiley, New York, 273 ppGoogle Scholar
  87. Rashkov GD, Dobrikova AG, Pouneva ID, Misra AN, Apostolova E (2012) Sensitivity of Chlorella vulgaris to herbicides. Possibility of using it as a biological receptor in biosensors. Sensors Actuators B 161:151–155CrossRefGoogle Scholar
  88. Redillas MCFR, Jeong JS, Strasser RJ, Kim YS, Kim JK (2011) JIP analysis on rice (Oryza sativa cv Nipponbare) grown under limited nitrogen conditions. J Korean Soc Appl Biol Chem 54:827–832CrossRefGoogle Scholar
  89. Schansker G, Toth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261PubMedCrossRefGoogle Scholar
  90. Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 279–319CrossRefGoogle Scholar
  91. Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238PubMedCrossRefGoogle Scholar
  92. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62PubMedCrossRefPubMedCentralGoogle Scholar
  93. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence photosynthesis. Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70Google Scholar
  94. Schreiber U, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res 113:127–144PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schweiger J, Lang M, Lichtenthaler HK (1996) Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. J Plant Physiol 148:536–547CrossRefGoogle Scholar
  96. Sharkey TD, Schrader SM (2006) High temperature stress. Physiology and molecular biology of stress tolerance in plants. Springer, Berlin, pp 101–129CrossRefGoogle Scholar
  97. Singh-Tomar R, Mathur S, Allakhverdiev SI, Jajoo A (2012) Changes in PSII heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). J Bioenerg Biomembr 44:411–419PubMedCrossRefPubMedCentralGoogle Scholar
  98. Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270:31–45CrossRefGoogle Scholar
  99. Srivastava A, Strasser RJ (1995) How do land plants respond to stress temperature and stress light? Arch Sci Geneve 48:135–146Google Scholar
  100. Srivastava A, Greppin H, Strasser RJ (1995) Acclimation of land plants to diurnal changes in temperature and light. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 4. Kluwer Academic Publishers, Dordrecht, pp 909–912Google Scholar
  101. Srivastava A, Guisse B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient OKJIP. Biochim Biophys Acta 1320:95–106CrossRefGoogle Scholar
  102. Stefanov D, Petkova V, Denev ID (2011) Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using. JIP-test Sci Hortic 128:1–6CrossRefGoogle Scholar
  103. Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B Biol 104:236. CrossRefGoogle Scholar
  104. Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155CrossRefGoogle Scholar
  105. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480Google Scholar
  106. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362CrossRefGoogle Scholar
  107. Strasser RJ, Tsimilli-Michael M, Srivastava A, Srivastava A (2005) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration chlorophyll a Fluorescence: a signature of photosynthesis. Kluwer Academic Publisher, Dordrecht, pp 321–362Google Scholar
  108. Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivorecording of prompt and delayed fluorescence and 820-nm reflection changesduring drying and after rehydration of the resurrection plant Haberlea rhodopen-sis. Biochim Biophys Acta 1797:1313–1326PubMedCrossRefPubMedCentralGoogle Scholar
  109. Suzuki K, Ohmori Y, Ratel E (2011) High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings. Plant Cell Physiol 52:1697–1707PubMedCrossRefPubMedCentralGoogle Scholar
  110. Trissl HW, Gao Y, Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. Biophys J 64:974–988PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tsimilli-Michael M, Strasser RJ (2008) In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Dordrecht, pp 679–703CrossRefGoogle Scholar
  112. Tsimilli-Michael M, Pecheux M, Strasser RJ (1998) Vitality and stress adaptation of the symbionts of coral reef and temperate foraminifers probed in hospite by the fluorescence kinetics OJIP. Archs Sci Geneve 51:205–240Google Scholar
  113. Van Heerden PD, Strasser RJ, Krüger GH (2004) Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol Plant 121:239–249PubMedCrossRefPubMedCentralGoogle Scholar
  114. Van Heerden PDR, Swanepoel JW, Krüger GHJ (2007) Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environ Exp Bot 61:124–136CrossRefGoogle Scholar
  115. van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150PubMedCrossRefPubMedCentralGoogle Scholar
  116. Vladkova R, Ivanova PI, Krastera V, Misra AN, Apostolova E (2009) Assessment of chlorophyll florescent and photosynthetic oxygen evolution parameters in pea thylakoid membranes for use in biosensors against QB binding herbicide- atrazine. C R Acad Bulg Sci 62:355–360Google Scholar
  117. Vladkova R, Dobrikova AG, Singh R, Misra AN, Apostolova E (2011) Photoelectron transport ability of chloroplast thylakoid membranes treated with NO donor SNP: changes in flash oxygen evolution and chlorophyll fluorescence. Nitric Oxide Biol Chem 24:84–90CrossRefGoogle Scholar
  118. Walters RG, Horton P (1991) Resolution of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth Res 27:121–133PubMedCrossRefGoogle Scholar
  119. Wobeser EAV, Figueroa FL, Cabello-Pasini A (2000) Effect of UV radiation on photoinhibition of marine macrophytes in culture systems. J Appl Phycol 12:159–168CrossRefGoogle Scholar
  120. Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57–64CrossRefGoogle Scholar
  121. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86PubMedCrossRefPubMedCentralGoogle Scholar
  122. Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43PubMedCrossRefPubMedCentralGoogle Scholar
  123. Zivcak M, Brestic M, Olsovska K, Slamka P (2008) Performance index as a sensitive indicator of water stress in Triticum aestivum. Plant Soil Environ 54:133–139CrossRefGoogle Scholar
  124. Zivcak M, Kalaji MH, Shao HB, Olsovska K, Brestic M (2014a) Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photochem Photobiol B Biol 137:107–115.
  125. Zivcak M, Olsovska K, Slamka P, Galambosova J, Rataj V, Shao HB, Brestic M (2014b) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 60:210–215CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amarendra Narayan Mishra
    • 1
    • 2
  1. 1.Khallikote Cluster UniversityBerhampurIndia
  2. 2.Centre for Life Science, Central University of JharkhandRanchiIndia

Personalised recommendations