Measuring Photosynthesis and Respiration with Infrared Gas Analysers

  • Cyril Douthe
  • Jorge Gago
  • Miquel Ribas-Carbó
  • Rubén Núñez
  • Nuria Pedrol
  • Jaume FlexasEmail author


Earth primary productivity reflects the balance between two important biological processes: photosynthesis and respiration (Atkin et al. 2015; Niinemets 2016). Photosynthesis (A) refers to the assimilation of the atmospheric CO2 and its conversion into sugars, the first basic organic compounds entering the metabolism. This process of CO2 fixation uses the sun radiation as the energy source, and water as the electron donor, which in turn releases oxygen in the atmosphere. Dark respiration (RD) or mitochondrial respiration (Atkin and Tjoelker 2003) employs the products of photosynthesis through the glycolysis (cytosol), the tricarboxylic acid cycle (TCA, matrix of mitochondria) and the electron transport rate chain (ETC, inner membrane mitochondria) to produce ATP and carbon skeletons needed for growth, cell maintenance, and other essential cellular processes. During the process of respiration, O2 is consumed, and CO2 is released to the atmosphere within the same order of magnitude than photosynthesis (Jansson et al. 2010), which highlights the importance of considering this process in the leaves, whole-plant and global models of carbon, water, and oxygen fluxes (Valentini et al. 2000; Canadell et al. 2007; Atkin et al. 2015). The velocity and extent of both processes can be assessed at the leaf level using infrared-based gas exchange analysers.


  1. Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351CrossRefPubMedGoogle Scholar
  2. Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG et al (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636CrossRefPubMedGoogle Scholar
  3. Bellasio C, Beerling DJ, Griffiths H (2016) An excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant Cell Environ 39:1180–1197CrossRefPubMedGoogle Scholar
  4. Buckley TN, Díaz-Espejo A (2015) Partitioning changes in photosynthetic rate into contributions from different variables. Plant Cell Environ 38:1200–1211CrossRefPubMedGoogle Scholar
  5. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carriquí M, Cabrera HM, Conesa MÀ, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Ribas-Carbo M, Tomás M, Flexas J (2015) Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ 38:448–460CrossRefPubMedGoogle Scholar
  7. Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264CrossRefGoogle Scholar
  8. Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88CrossRefPubMedGoogle Scholar
  9. Epron D, Godard D, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L and Castanea sativa mill). Plant Cell Environ 18:43–51CrossRefGoogle Scholar
  10. Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-berry leaf photosynthesis model. Plant Cell Environ 27:137–153CrossRefGoogle Scholar
  11. Evans JR, Santiago LS (2014) PrometheusWiki gold leaf protocol: gas exchange using LI-COR 6400. Funct Plant Biol 41:223–226CrossRefGoogle Scholar
  12. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefPubMedGoogle Scholar
  13. Field CB, Ball JT, Berry JA (1989) Photosynthesis: principles and field techniques. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology: field methods and instrumentation. Chapman & Hall, New York, pp 209–253CrossRefGoogle Scholar
  14. Field CB, Ball JT, Berry JA (2000) Photosynthesis: principles and field techniques. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology. Springer, Dordrecht, pp 209–253CrossRefGoogle Scholar
  15. Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471CrossRefGoogle Scholar
  16. Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyerc E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012a) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193:70–84CrossRefPubMedGoogle Scholar
  17. Flexas J, Loreto F, Medrano H (eds) (2012b) Terrestrial photosynthesis in a changing environment: a molecular, physiological, and ecological approach. Cambridge University Press, Cambridge ISBN: 9780521899413Google Scholar
  18. Flexas J, Scoffoni C, Gago J, Sack L (2013) Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J Exp Bot 64:3965–3981CrossRefPubMedGoogle Scholar
  19. Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbó M, Tomàs M, Niinemets Ü (2016) Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39:965–982CrossRefPubMedGoogle Scholar
  20. Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Doctoral dissertation, Wageningen University, VeenmanGoogle Scholar
  21. Gago J, Douthe C, Flórez-Sarasa I, Escalona JM, Galmés J, Fernie AR, Flexas J, Medrano H (2014) Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci 226:108–119CrossRefPubMedGoogle Scholar
  22. Gallé A, Flexas J (2010) Gas-exchange and chlorophyll fluorescence measurements in grapevine leaves in the field. In: Delrot S, Medrano H, Or E, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer, Dordrecht, pp 107–121CrossRefGoogle Scholar
  23. Gallé A, Florez-Sarasa I, Tomás M, Pou A, Medrano H, Ribas-Carbó M, Flexas J (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J Exp Bot 60:2379–2390CrossRefPubMedGoogle Scholar
  24. Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RA, Madgwick PJ, Haslam RP, Medrano H, Parry MA (2005) RubisCO specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579CrossRefGoogle Scholar
  25. Galmés J, Molins A, Flexas J, Conesa MÀ (2017) Coordination between leaf CO2 diffusion and Rubisco properties allows maximizing photosynthetic efficiency in Limonium species. Plant Cell Environ 40:2081–2094CrossRefPubMedGoogle Scholar
  26. Genty B, Harbinson J, Briantais JM, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25:249–257CrossRefPubMedGoogle Scholar
  27. Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849CrossRefGoogle Scholar
  28. Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282CrossRefGoogle Scholar
  29. Hermida-Carrera C, Kapralov MV, Galmés J (2016) Rubisco catalytic properties and temperature response in crops. Plant Physiol 171:2549–2561PubMedPubMedCentralGoogle Scholar
  30. Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. BioSci 60:685–696CrossRefGoogle Scholar
  31. Jones HG (1985) Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant Cell Environ 8:95–104CrossRefGoogle Scholar
  32. Laisk A, Oja V (2018) Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. Photosynth Res 136:63 CrossRefPubMedGoogle Scholar
  33. Long SP, Farage PK, Garcia RL (1996) Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J Exp Bot 47:1629–1642CrossRefGoogle Scholar
  34. Loriaux S, Avenson T, Welles J, McDermitt D, Eckles R, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 36:1755–1770CrossRefPubMedGoogle Scholar
  35. Martins SC, Galmés J, Molins A, DaMatta FM (2013) Improving the estimation of mesophyll conductance to CO2: on the role of electron transport rate correction and respiration. J Exp Bot 64:3285–3298CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  37. Montero R, Ribas-Carbó M, Del Saz NF, El Aou-ouad H, Berry JA, Flexas J, Bota J (2016) Improving respiration measurements with gas exchange analyzers. J Plant Physiol 207:73–77CrossRefPubMedGoogle Scholar
  38. Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92CrossRefPubMedGoogle Scholar
  39. Niinemets Ü (2016) Within-canopy variations in functional leaf traits: structural, chemical and ecological controls and diversity of responses. In: Hikosaka K, Niinemets Ü, Anten N (eds) Canopy photosynthesis: from basics to applications. Springer, Berlin, pp 101–141CrossRefGoogle Scholar
  40. Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ 28:1552–1566CrossRefGoogle Scholar
  41. Niinemets Ü, Díaz-Espejo A, Flexas J, Galmes J, Warren CR (2009) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282CrossRefPubMedGoogle Scholar
  42. Osmond B, Förster B (2006) Photoinhibition: then and now. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, gene regulation, and environment: advances in photosynthesis and respiration. Kluwer, Dordrecht, pp 11–22CrossRefGoogle Scholar
  43. Osmond CB, Ludlow MM, Davis R, Cowan IR, Powles SB, Winter K (1979) Stomatal responses to humidity in Opuntia inermis in relation to control of CO2 and H2O exchange patterns. Oecologia 41:65–76CrossRefPubMedGoogle Scholar
  44. Pérez-Martín A, Flexas J, Ribas-Carbó M, Bota J, Tomás M, Infante JM, Díaz-Espejo A (2009) Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J Exp Bot 60:2391–2405CrossRefPubMedGoogle Scholar
  45. Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60:2217–2234CrossRefPubMedGoogle Scholar
  46. Sharkey TD (2016) What gas exchange data can tell us about photosynthesis. Plant Cell Environ 39:1161–1163CrossRefPubMedGoogle Scholar
  47. Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040CrossRefPubMedGoogle Scholar
  48. Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriquí M, Laanisto L, Morales L, Nadal M, Rojas R, Talts E, Tomas M, Hanba Y, Niinemets Ü, Flexas J (2016) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209:1576–1590CrossRefPubMedGoogle Scholar
  49. Valentini R, Epron D, Deangelis P, Matteucci G, Dreyer E (1995) In-situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L) leaves – diurnal cycles under different levels of water-supply. Plant Cell Environ 18:631–640CrossRefGoogle Scholar
  50. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Guðmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404(6780):861–865CrossRefPubMedGoogle Scholar
  51. von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas-exchange of leaves. Planta 153:376–387CrossRefGoogle Scholar
  52. Walker BJ, Skabelund DC, Busch FA, Ort DR (2016) An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope–intercept regression. Plant Cell Environ 39:1198–1203CrossRefPubMedGoogle Scholar
  53. Walker BJ, Orr DJ, Carmo-Silva E, Parry MA, Bernacchi CJ, Ort DR (2017) Uncertainty in measurements of the photorespiratory CO2 compensation point and its impact on models of leaf photosynthesis. Photosynth Res 132:245–255CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van der Putten, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32:448–464CrossRefPubMedGoogle Scholar
  55. Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J Exp Bot 62:3489–3499CrossRefPubMedPubMedCentralGoogle Scholar

For Further Details

  1. LI-COR (2012) Using the LI-6400/LI-6400XT portable photosynthesis system – Version 6. LI-COR Biosciences Inc., LincolnGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cyril Douthe
    • 1
  • Jorge Gago
    • 1
  • Miquel Ribas-Carbó
    • 1
  • Rubén Núñez
    • 2
  • Nuria Pedrol
    • 3
  • Jaume Flexas
    • 1
    Email author
  1. 1.Research Group on Plant Biology under Mediterranean ConditionsUniversitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA)Palma de MallorcaSpain
  2. 2.Geonica, S.A.MadridSpain
  3. 3.Research Group on Plant and SoilUniversidade de VigoVigoSpain

Personalised recommendations