Computational Approach to Study Ecophysiology

  • Bibhuti Prasad Barik
  • Amarendra Narayan Mishra


Ecophysiology is the study of how the environmental cues affect the functional aspects of an organism. This aspect is vital for the adaptation of living organisms to the ever changing surrounding, and regulates the distribution and richness of the organisms in the natural habitat. This interaction of ecosystem with an organism and its physiological status are governed by the genomic structure and time period of environmental impact. The duration and dose or intensity of the environmental impact determines the functional and genomic stability of organisms, both at individual and community level. Genome performs as unified system displaying intricate and dynamic behavior (Zhu et al. 2008). Ecophysiological genomics deciphers the alterations in gene structure and function in a specific environment. The study of such alterations in the genome, which are pivotal for the functional integrity of an organism, can be well documented through bioinformatics tools (Aubin-Horth and Renn 2009). In silico experimental strategies can ease sighting of core genomic elements, regulatory networks and conserved sequences across species and the variations in biotic and abiotic components of the environmental (McCarroll et al. 2004; Ragland et al. 2010). These studies will bring out comparative schemes didactic to the variations arising from ecological variations, leading to adaptation, speciation and evolution, as such.


  1. Albertson RC, Yan YL, Titus TA, Pisano E, Vacchi M, Yelick PC, Detrich HW, Postlethwait JH (2010) Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evol Biol 10:4CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arbona V, Manzi M, Ollas C, Gomez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aubin-Horth N, Renn SCP (2009) Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol 18:3763–3780CrossRefPubMedGoogle Scholar
  4. Barik BP (2013a) Computational visualization of biomolecular structures. Int J Atoms Mol 3:576–578Google Scholar
  5. Barik BP (2013b) In silico observations and analysis of metabolic pathways. Int J Sci Res 2:44–48Google Scholar
  6. Barik BP (2015) Animal actin phylogeny and RNA secondary structure study. Int J Knowl Discov Bioinf 5:47–63CrossRefGoogle Scholar
  7. Berkelmans R, Willis BL (1999) Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore central great barrier reef. Coral Reefs 18:219–228CrossRefGoogle Scholar
  8. Cheviron ZA, Whitehead A, Brumfield RT (2008) Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichiacapensis) along an altitudinal gradient. Mol Ecol 17:4556–4569CrossRefPubMedGoogle Scholar
  9. Claydon AJ, Beynon R (2012) Proteome dynamics: revisiting turnover with a global perspective. Mol Cell Proteomics 11:1551–1565CrossRefPubMedPubMedCentralGoogle Scholar
  10. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cork JM, Purugganan MD (2004) The evolution of molecular genetic pathways and networks. Bioassays 26:479–484CrossRefGoogle Scholar
  12. Denny MW, Gaylord B (2010) Marine ecomechanics. Annu Rev Mar Sci 2:89–114CrossRefGoogle Scholar
  13. Diz AP, Martinez-Fernandez M, Rolan-Alvarez E (2012) Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol 21:1060–1080CrossRefPubMedGoogle Scholar
  14. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107CrossRefGoogle Scholar
  15. Edmeades GO, McMaster GS, White JW (2004) Genomics and the physiologist: bridging the gap between genes and crop response. Field Crops Res 90:5–18CrossRefGoogle Scholar
  16. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 107:1–15CrossRefGoogle Scholar
  17. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  18. Galperin M, Koonin E (1999) Functional genomics, enzyme evolution, homologous and analogous enzymes encoded in microbial genomes. Genetica 106:159–170CrossRefPubMedGoogle Scholar
  19. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257CrossRefPubMedPubMedCentralGoogle Scholar
  20. Green JL, Hastings A, Arzberger P, Ayala FJ, Cottingham KL et al (2005) Complexity in ecology and conservation: mathematical, statistical, and computational challenges. Bioscience 55:501–510CrossRefGoogle Scholar
  21. Hagenblad J, Tang CL, Molitor J, Werner J, Zhao K, Zheng HG, Marjoram P, Weigel D, Nordborg M (2004) Haplotype structure and phenotypic associations in the chromosomal regions surrounding two Arabidopsis thaliana flowering time loci. Genetics 168:1627–1638CrossRefPubMedPubMedCentralGoogle Scholar
  22. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford/New YorkGoogle Scholar
  23. Haubold B, Wiehe T (2004) Comparative genomics: methods and applications. Naturwissenschaften 91:405–421PubMedGoogle Scholar
  24. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147CrossRefGoogle Scholar
  25. Kaur C, Kumar G, Kaur S, Ansari MW, Pareek A, Sopory SK, Singla-Pareek SL (2015) Molecular cloning and characterization of salt overly sensitive gene promoter from Brassica juncea (BjSOS2). Mol Biol Rep 42:1139–1148CrossRefPubMedGoogle Scholar
  26. Kearney MR, Helmuth B, Matzelle A (2012) Biomechanics meets the ecological niche: the importance of temporal data resolution. J Exp Biol 215:922–933CrossRefPubMedGoogle Scholar
  27. Kim TY, Kim HU, Lee SY (2010) Data integration and analysis of biological networks. Curr Opin Biotechnol 21:78–84CrossRefPubMedGoogle Scholar
  28. Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4:e1000223CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lai Z, Kane NC, Zou Y, Rieseberg LH (2008) Natural variation in gene expression between wild and weedy populations of Helianthus annuus. Genetics 179:1881–1890CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lockwood BL, Somero GN (2011) Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol Ecol 20:517–529CrossRefPubMedGoogle Scholar
  31. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994CrossRefPubMedGoogle Scholar
  32. Mandic M, Sloman KA, Richards JG (2009) Escaping to the surface: a phylogenetically independent analysis of hypoxia-induced respiratory behaviors in sculpins. Physiol Biochem Zool 82:730–738CrossRefPubMedGoogle Scholar
  33. McCarroll SA, Murphy CT, Zou SG, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36:197–204CrossRefPubMedGoogle Scholar
  34. Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. TAG Theor Appl Genet 125:625–645CrossRefPubMedGoogle Scholar
  35. Near TJ, Pesavento JJ, Cheng CHC (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol Phylogenet Evol 32:881–891CrossRefPubMedGoogle Scholar
  36. Nelson CD, Johnsen KH (2008) Genomic and physiological approaches to advancing forest tree improvement. Tree Physiol 28:1135–1143CrossRefPubMedGoogle Scholar
  37. Nielsen R (2001) Statistical tests of selective neutrality in the age of genomics. Heredity 86:641–647CrossRefPubMedGoogle Scholar
  38. Nongpiur RC, Singla-Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17:343–357CrossRefPubMedPubMedCentralGoogle Scholar
  39. OʼDonnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE (2010) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Prog Ser 398:157–171CrossRefGoogle Scholar
  40. Palmer M, Bernhardt ES, Chornesky EA, Collins SL, Dobson AP et al (2005) Ecological science and sustainability for the 21st century. Front Ecol Environ 3:4–11CrossRefGoogle Scholar
  41. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  42. Podrabsky JE, Somero GN (2006) Inducible heat tolerance in Antarctic notothenioid fishes. Polar Biol 30:39–43CrossRefGoogle Scholar
  43. Ragland GJ, Denlinger DL, Hahn DA (2010) Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proc Natl Acad Sci U S A 107:14909–14914CrossRefPubMedPubMedCentralGoogle Scholar
  44. Real LA, Brown JH (eds) (1991) Foundations of Ecology: Classic Papers with Commentaries. University of Chicago Press, Chicago, USA, pp. 920Google Scholar
  45. Rees BB, Andacht T, Skripnikova E, Crawford DL (2011) Population proteomics: quantitative variation within and among populations in cardiac protein expression. Mol Biol Evol 28: 1271–1279Google Scholar
  46. Schlichting C, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, SunderlandGoogle Scholar
  47. Schwenk K, Padilla DK, Bakken GS, Full RJ (2009) Grand challenges in organismal biology. Integr Comp Biol 49:7–14CrossRefPubMedGoogle Scholar
  48. Smith EN, Kruglyak L (2008) Gene-environment interaction in yeast gene expression. PLoS Biol 6:810–824Google Scholar
  49. Somero GN (2000) Unity in diversity: a perspective on the methods, contributions, and future of comparative physiology. Annu Rev Physiol 62:927–937CrossRefPubMedGoogle Scholar
  50. van Helden P (2013) Data-driven hypotheses. EMBO Rep 14:104CrossRefPubMedGoogle Scholar
  51. Weinig C, Ewers BE, Welch SM (2014) Ecological genomics and process modeling of local adaptation to climate. Curr Opin Plant Biol 18:66–72CrossRefPubMedGoogle Scholar
  52. Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene expression. Proc Natl Acad Sci U S A 103:5425–5430CrossRefPubMedPubMedCentralGoogle Scholar
  53. Whitehead A, Pilcher W, Champlin D, Nacci D (2012) Common mechanism underlies repeated evolution of extreme pollution tolerance. Proc R Soc B 279:427–433CrossRefPubMedGoogle Scholar
  54. Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9:426–432CrossRefPubMedGoogle Scholar
  55. Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE, Schadt EE (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 40:854–861CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bibhuti Prasad Barik
    • 1
  • Amarendra Narayan Mishra
    • 2
    • 3
  1. 1.Department of ZoologyKhallikote Autonomous CollegeBerhampurIndia
  2. 2.Khallikote Cluster UniversityBerhampurIndia
  3. 3.Centre for Life ScienceCentral University of JharkhandRanchiIndia

Personalised recommendations