Exploring Plants Strategies for Allelochemical Detoxification

  • Margot SchulzEmail author
  • Meike Siebers
  • Nico Anders


The success of allelopathic plants is characterized by the releases of allelochemicals that suppress the growth of receiver plants directly and indirectly, due to concomitant effects on their microbiome. Therefore, negative effects of allelochemicals on microorganisms can enhance repercussions on plants. On the other hand, plants exposed to allelochemicals develop strategies to eliminate, detoxify or degrade the compounds, whereby plants can take advantage of metabolic properties of microorganisms associated with the root surface and the rhizosphere. Peroxidases and glucosyltransferases have important functions in those processes. In this chapter, methods are presented which allow an estimation of the extent of microbiome damage due to allelochemicals (signature lipid biomarker analysis combined with next generation sequencing). Assays for the determination of glucosyltransferases and peroxidases, important enzyme classes in detoxification processes, are presented with emphasis on benzoxazolinone detoxification as an example for the involvement of microorganisms in reaction sequences. Finally, methods to study alterations in the composition of cell wall polymers are presented as cell wall polymers can be modified during detoxification reactions.


  1. Agblevor FA, Murden A, Hames BR (2004) Improved method of analysis of biomass sugars using high-performance liquid chromatography. Biotechnol Lett 26:1207–1210CrossRefPubMedGoogle Scholar
  2. Albers SV, Van de Vossenberg JL, Driessen AJ, Konings WN (2000) Adaptations of the archaeal cell membrane to heat stress. Front Biosci 5:813–820CrossRefGoogle Scholar
  3. Anders N, Humann H, Langhans B, Spiess AC (2015) Simultaneous determination of acid-soluble biomass-derived compounds using high performance anion exchange chromatography coupled with pulsed amperometric detection. Anal Methods 7:7866–7873. CrossRefGoogle Scholar
  4. Anders N, Schelden M, Roth S, Spiess AC (2017) Automated chromatographic laccase-mediator-system activity assay. Anal Bioanal Chem 409(20):4801–4809Google Scholar
  5. Baerson SR, Sánchez-Moreiras AM, Pedrol-Bonjoch N, Schulz M, Kagan IN, Agarwal AK, Reigosa MJ, Duke SO (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolinone. J Biol Chem 280:21867–21881CrossRefPubMedGoogle Scholar
  6. Benning C, Somerville CR (1992) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol Parasitol 174:2352–2360CrossRefGoogle Scholar
  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefPubMedGoogle Scholar
  8. Browse J, McCourt PJ, Somerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141–145CrossRefPubMedGoogle Scholar
  9. Buyer JS, Sasser M (2012) High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130CrossRefGoogle Scholar
  10. Chen K, Sorek H, Zimmermann H, Wemmer DE, Pauly M (2013) Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-ethyl-3-methylimidazolium acetate solvent. Anal Chem 85:3213–3221CrossRefGoogle Scholar
  11. Courty PE, Labbe´ J, Kohler A, Marcxais B, Bastien CJ, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260CrossRefPubMedGoogle Scholar
  12. Cowie GL, Hedges JI (1984) Determination of neutral sugars in plankton, sediments, and wood by capillary gas chromatography of equilibrated isomeric mixtures. Anal Chem 56:497–504CrossRefGoogle Scholar
  13. Cuerten C, Anders N, Juchem N, Ihling N, Volkenborn K, Knapp A, Jaeger KE, Buechs J, Spiess AC (2018) Fast automated online xylanase activity assay using HPAEC-PAD. Anal Bioanal Chem 410(1):57–69Google Scholar
  14. Foster CE, Martin TM, Pauly M (2010a) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. J Vis Exp 37:e1837. CrossRefGoogle Scholar
  15. Foster CE, Martin TM, Pauly M (2010b) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J Vis Exp 37:e1837. CrossRefGoogle Scholar
  16. Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625CrossRefGoogle Scholar
  17. Haghi Kia S, Schulz M, Ayah E, Schouten A, Müllenborn C, Paetz C, Schneider B, Hofmann D, Disko U, Tabaglio V, Marocco A (2014) Abutilon theophrasti’s defense against the allelochemical benzoxazolin-2(3h)-one: support by Actinomucor elegans. J Chem Ecol 40:1286–1298CrossRefGoogle Scholar
  18. Hamilton JG, Comai K (1988) Separation of neutral lipid, free fatty acid and phospholipid classes by normal phase HPLC. Lipids 23:1150–1153CrossRefPubMedGoogle Scholar
  19. Ikeda S, Rallos LEE, Okubo T, Eda S, Inaba S, Mitsui H, Minamisawa K (2008) Microbial community analysis of field-grown soybeans with different nodulation phenotypes. Appl Environ Microbiol 74:5704–5709CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kahn MU, Williams JP (1977) Improved thin-layer chromatographic method for the separation of major phospholipids and glycolipids from plant lipid extracts and phosphatidyl glycerol and bis(monoacylglyceryl) phosphate from animal lipid extracts. J Chromatogr 140:179–185CrossRefGoogle Scholar
  21. Kim HY, Salem N (1990) Separation of lipid classes by solid phase extraction. J Lipid Res 31:2285–2289PubMedGoogle Scholar
  22. Kruse J, Abraham M, Amelung W, Baum C, Bol R, Kühn O, Lewandowski H, Niederberger J, Oelmann Y, Rüger C, Santner J, Siebers M, Siebers N, Spohn M, Vestergren J, Vogts A, Santner J (2015) Innovative methods in soil phosphorus research: a review. J Plant Nutr Soil Sci 178:43–88CrossRefGoogle Scholar
  23. Medeiros PM, Simoneit BRT (2007) Analysis of sugars in environmental samples by gas chromatography – mass spectrometry. J Chrom A 1141:271–278CrossRefGoogle Scholar
  24. Pagé AP, Yergeau É, Greer CW (2015) Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons. PLoS One 10(7):e0132062. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Picart P, Liu H, Grande PM, Anders N, Zhu L, Klankermayer J, Leitner W, Domínguez de María P, Schwaneberg U, Schallmey A (2017) Multi-step biocatalytic depolymerization of lignin. Appl Microbiol Biotechnol 101(15):6277–6287Google Scholar
  26. Schulz M, Wieland I (1999) Variation in metabolism of BOA among species in various field communities – biochemical evidence for co-evolutionary processes in plant communities? Chemoecology 9:133–141CrossRefGoogle Scholar
  27. Schulz M, Knop M, Muellenborn C, Steiner U (2013) Root-associated microorganisms prevent caffeine accumulation in shoots of Salvia officinalis L. Int J Agric Forest 3:152–158Google Scholar
  28. Schulz M, Filary B, Kühn S, Colby T, Harzen A, Schmidt J, Sicker D, Hennig D, Hofmann D, Disko U, Anders N (2016a) Benzoxazolinone detoxification by N-glucosylation: the multi-compartment-network of Zea mays L. Plant Sign Behav 11:e1119962. CrossRefGoogle Scholar
  29. Schulz M, Kant S, Colby T, Harzen A, Schmidt J, Sicker D, Pourmoayyed P (2016b) Zea mays glucosyltransferase BX9 - an essential enzyme for benzoxazolinone detoxification. JAI 2:25–38Google Scholar
  30. Schulz M, Sicker D, Schackow O, Hennig L, Hofmann D, Disko U, Ventura M, Basyuk K (2017a) 6-Hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one—A degradable derivative of natural 6-Hydroxybenzoxazolin-2(3H)-one produced by Pantoea ananatis. Commun Integr Biol 10:e1302633.
  31. Schulz M, Sicker D, Schackow O, Hennig L, Yurkov A, Siebers M, Hofmann D, Disko U, Ganimede C, Mondani L, Tabaglio V, Marocco A (2017b) Cross-cooperations of Abutilon theophrasti Medik. and root surface colonizing microorganisms disarm phytotoxic hydroxy-benzoxazolin- 2(3H)-ones. Plant Signal Behav 12(8):e1358843.
  32. Siebers M, Brands M, Wewer V, Duan HG, Dörmann P (2016) Lipids in plant–microbe interactions. Biochim Biophys Acta 1861:1379–1395CrossRefPubMedGoogle Scholar
  33. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agr Food Chem 58:9043–9053CrossRefGoogle Scholar
  34. Sluiter AD, Hames B, Ruiz RO, Scarlata CJ, Sluiter JB, Templeton DW, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass, laboratory analytical procedure. In: NREL/TP-510-42618Google Scholar
  35. Venturelli S, Belz RG, Kämper A, Berger A, von Horn K, Wegner A, Böcker A, Zabulon G, Langenecker T, Kohlbacher O, Barneche F, Weigel D, Lauer UM, Bitzer M, Becker C (2015) Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors. Plant Cell 27:3175–3189CrossRefPubMedPubMedCentralGoogle Scholar
  36. Viell J, Inouye H, Szekely NK, Frielinghaus H, Marks C, Wang Y, Anders N, Spiess AC, Makowski L (2016) Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures. Biotechnol Biofuels 9(1):7Google Scholar
  37. Wang C-M, Li T-C, Jhan Y-L, Weng J-H, Chou C-H (2013) The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum. PLoS One 8(12):e85162. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Welti R, Wang X (2004) Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7:337–344CrossRefPubMedGoogle Scholar
  39. Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002CrossRefPubMedGoogle Scholar
  40. Wewer V, Dombrink I, vom Dorp K, Dörmann P (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipid Res 52:1039–1054CrossRefPubMedPubMedCentralGoogle Scholar
  41. White DC, Meadows P, Eglinton G, Coleman ML (1993) In situ measurement of microbial biomass, community structure and nutritional status and discussion. Phil Trans R Soc Lond Ser A 344:59–67CrossRefGoogle Scholar
  42. Wu JR, James DW, Dooner HK, Browse J (1994) A mutant of Arabidopsis deficient in the elongation of palmitic acid. Plant Physiol 106:143–150CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fert Soils 29:111–129CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMBIO Institut für Biotechnologie der PflanzenUniversität BonnBonnGermany
  2. 2.AVT-Enzyme Process TechnologyRWTH Aachen UniversityAachenGermany

Personalised recommendations