Confocal and Transmission Electron Microscopy for Plant Studies

  • Adela M. Sánchez-Moreiras
  • Marianna Pacenza
  • Fabrizio Araniti
  • Leonardo BrunoEmail author


The development of high-sensitive microscopic techniques, together with the development of methods for the conservation of cells and the improvement of methods for obtaining ultra-fine sections, gave rise to the knowledge of the cellular structure in the second half of the twentieth century. The combination of these techniques with immune-cytological techniques and the use of computational systems of image analysis have increased the interest in the use of electron and confocal microscopy in biological research. Knowing which areas of the cell morphology are being altered after treatment is essential to establish new physiological or biochemical measures for the in detail study of the effects of stressing factors on plants. A general view of the root or shoot tissues examined under microscopy will allow the identification of cellular organization, where alterations can be detected as erroneous division patterns, loss of cell identity or cellular disorganization (Rost et al. 1996; Zhu and Rost 2000). In particular, root tips act as finely tuned sensor for different kinds of stress, which makes their study especially interesting for interpreting the plant stress response.



The implementation of these techniques was possible thanks to the invaluable assistance of Inés Pazos and Jesús Méndez from the Central Research Services (CACTI) of the University of Vigo.


  1. Amin MA, Nandi S, Mondal P, Mahata T, Ghosh S, Bhattacharyya K (2017) Physical chemistry in a single live cell: confocal microscopy. Phys Chem Chem Phys 19:12620–12627CrossRefPubMedGoogle Scholar
  2. Aouar L, Chebli Y, Geitmann A (2010) Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. Sex Plant Reprod 23:15–27Google Scholar
  3. Araniti F, Graña E, Krasuska U, Bogatek R, Reigosa MJ, Abenavoli MR, Sánchez-Moreiras AM (2016) Loss of gravitropism in farnesene-treated arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. PloS one 11(8):e0160202Google Scholar
  4. Araniti F, Bruno L, Sunseri F, Pacenza M, Forgione I, Bitonti MB, Abenavoli MR (2017) The allelochemical farnesene affects Arabidopsis thaliana root meristem altering auxin distribution. Plant Physiol Biochem 121:14–20CrossRefPubMedGoogle Scholar
  5. Arpagaus S, Rawyler A, Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277:1780–1787CrossRefPubMedGoogle Scholar
  6. Ben-Tov D, Idan-Molakandov A, Hugger A, Ben-Shlush I, Günl M, Yang B, Usadel B, Harpaz-Saad S (2018) The role of COBRA-LIKE 2 function, as part of the complex network of interacting pathways regulating Arabidopsis seed mucilage polysaccharide matrix organization. Plant J 94(3):497–512. CrossRefPubMedGoogle Scholar
  7. Bertani FR, Mozetic P, Fioramonti M, Iuliani M, Ribelli G, Pantano F, Santini D, Tonini G, Trombetta M, Businaro L, Selci S, Rainer A (2017) Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep 7:8965CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefPubMedGoogle Scholar
  9. Bruno L, Pacenza M, Forgione I, Lamerton LR, Greco M, Chiappetta A, Bitonti MB (2017) In Arabidopsis thaliana cadmium impact on the growth of primary root by altering SCR expression and auxin-cytokinin cross-talk. Front Plant Sci 8:1323CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burton RA, Gibeaut DM, Bacic A, Findlay K, Roberts K, Hamilton A, Baulcombe DC, Fincher GB (2000) Virusinduced silencing of a plant cellulose synthase gene. Plant Cell 12:691–706Google Scholar
  11. Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  13. Chen H, Zhang X (2015) Subcellular localization of CAX proteins in plants. Mol Soil Biol 6:1–5Google Scholar
  14. Choi W-G, Toyota M, Kim S-H, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. PNAS 111:6497–6502CrossRefPubMedGoogle Scholar
  15. Chumak N, Mosiolek M, Schoft VK (2015) Sample preparation and fractionation of Arabidopsis thaliana sperm and vegetative cell nuclei by FACS. Bio Protocol 5(22):e1664CrossRefPubMedPubMedCentralGoogle Scholar
  16. Colmer TD, Fan TWM, Higashi RM, Läuchli A (1994) Interactions of Ca2+ and NaCl stress on the relations and intracellular pH of Sorghum bicolor root tips. An in vivo 32P-NMR study. J Exp Bot 45:1037–1044CrossRefGoogle Scholar
  17. D’Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872CrossRefPubMedGoogle Scholar
  18. Díaz-Tielas C, Graña E, Sotelo T, Reigosa MJ, Sánchez-Moreiras AM (2012) The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant Cell Environ 35:1500–1517CrossRefPubMedGoogle Scholar
  19. Díaz-Tielas C, Graña E, Maffei M, Reigosa MJ, Sánchez-Moreiras AM (2017) Plasma membrane depolarization precedes photosynthesis damage and long-term leaf bleaching in (E)-chalcone-treated Arabidopsis shoots. J Plant Physiol 218:56–65CrossRefPubMedGoogle Scholar
  20. Dinh N, van der Ent A, Mulligan DR, Nguyen AV (2018) Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environ Exp Bot 147:1–12CrossRefGoogle Scholar
  21. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organization of the Arabidopsis thaliana root. Development 119:71–84PubMedGoogle Scholar
  22. Fahy D, Sanad MNME, Duscha K, Lyons M, Liu F, Bozhkov P, Kunz H-H, Hu J, Neuhaus HE, Steel PG, Smertenko A (2017) Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY. Sci Rep 7:39069CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fuchs N, Krajewski P, Bernhard C (2015) In situ observation of austenite grain growth in plain carbon steels by means of high-temperature laser scanning confocal microscopy. BHM Berg-und Hüttenmännische Monatshefte 160:214–220CrossRefGoogle Scholar
  24. Giełwanowska I, Pastorczyk M, Kellmann-Sopyła W, Górniak D, Górecki RJ (2015) Morphological and ultrastructural changes of organelles in leaf mesophyll cells of the arctic and antarctic plants of Poaceae family under cold influence. Arct Antarct Alp Res 47:17–25CrossRefGoogle Scholar
  25. Graña E, Sotelo T, Díaz-Tielas C, Araniti F, Krasuska U, Bogatek R, Reigosa MJ, Sánchez-Moreiras AM (2013) Citral induces auxin-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J Chem Ecol 39:271–282CrossRefPubMedGoogle Scholar
  26. Graña E, Costas-Gil A, Longueira S, Celeiro M, Teijeira M, Reigosa MJ, Sánchez-Moreiras AM (2017) Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. J Plant Physiol 218:45–55Google Scholar
  27. Hardie G (2011) AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908CrossRefPubMedPubMedCentralGoogle Scholar
  28. Haseloff J (2003) Old botanical techniques for new microscopes. Biotechniques 34:1174–1183PubMedGoogle Scholar
  29. He YM, Clark G, Schaibley JR, He Y, Chen MG, Wie YJ, Ding X, Zhang Q, Yao W, Xu X, Lu CY, Pan JW (2015) Single quantum emitters in monolayer semiconductors. Nat Nanotechnol 10:497CrossRefPubMedGoogle Scholar
  30. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567CrossRefPubMedGoogle Scholar
  31. Hepler PK, Bonsignore CL (1990) Caffeine inhibition of cytokinesis: ultrastructure of cell plate formation/degradation. Protoplasma 157:182–192CrossRefGoogle Scholar
  32. His I, Driouich A, Nicol F, Jauneau A, Höfte H (2001) Altered pectin composition in primary walls of Korrigan, a dwarf mutant of Arabidopsis deficient in membrane-bound endo-1,4-β-glucanase. Planta 212:348–358Google Scholar
  33. Ibl V, Peters J, Stöger E, Arcalís E (2018) Imaging the ER and endomembrane system in cereal endosperm. In: Hawes C, Kriechbaumer V (eds) The plant endoplasmic reticulum, Methods in Molecular Biology, vol 1691. Humana Press, New York, pp 251–262CrossRefGoogle Scholar
  34. Joseph B, Jini D (2010) Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. J Plant Sci 5:376–390CrossRefGoogle Scholar
  35. Kandasamy MK, Kristen U (1987) Pentachlorophenol affects mitochondria and induces formation of Golgi apparatus-endoplasmic reticulum hybrids in tobacco pollen tubes. Protoplasma 141:112–120CrossRefGoogle Scholar
  36. Kaur H, Inderjit, Kaushik S (2005) Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol Biochem 43:77–81CrossRefPubMedGoogle Scholar
  37. Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140:102–114CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kiechle FL, Zhang X (2002) Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 326:27–45CrossRefPubMedGoogle Scholar
  39. Koyro HW (2002) Ultrastructural effects of salinity in higher plants. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Springer, Dordrecht, pp 139–157Google Scholar
  40. Kratsch HA, Wise RR (2000) The ultra structure of chilling stress. Plant Cell Environ 23:337–350CrossRefGoogle Scholar
  41. Kurup S, Runions J, Köhler U, Laplaze L, Hodge S, Haseloff J (2005) Marking cell lineages in living tissues. Plant J 42:444–453CrossRefPubMedGoogle Scholar
  42. Laplaze L, Parizot B, Baker A, Ricaud L, Martiniere A, Auguy F, Franch C, Nussaume L, Bogusz D, Haseloff J (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot 56:2433–2442CrossRefPubMedGoogle Scholar
  43. Larrieu A, Champion A, Legrand J, Lavenus J, Mast D, Brunoud G, Oh J, Guyomarc’h S, Pizot M, Farmer EE, Turnbull C, Vernoux T, Bennett MJ, Laplaze L (2015) A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat Commun 6:6043CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lee H-Y, Back K (2017) Cadmium disrupts subcellular organelles, including chloroplasts, resulting in melatonin induction in plants. Molecules 22:1791CrossRefGoogle Scholar
  45. Liu J, Müller B (2017) Imaging TCSn::GFP, a synthetic cytokinin reporter. In: Kleine-Vehn J, Sauer M (eds) Arabidopsis thaliana, Plant Hormones. Methods in Molecular Biology, vol 497. Humana Press, New York, pp 81–90Google Scholar
  46. Liu J, Yang L, Luan M, Wang Y, Zhang C, Zhang B, Shi J, Zhao F, Lan W, Luan S (2015) A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. PNAS 112:E6571–E6578CrossRefPubMedGoogle Scholar
  47. Luo Y, Russinova E (2017) Quantitative microscopic analysis of plasma membrane receptor dynamics in living plant cells. In: Russinova E, Caño-Delgado A (eds) Brassinosteroids, Methods in Molecular Biology, vol 1564. Humana Press, New York, pp 121–132CrossRefGoogle Scholar
  48. Matsumoto B (2003) Cell biological applications of confocal microscopy, vol 70. Academic, Cambridge, MAGoogle Scholar
  49. Meng F, Luo Q, Wang Q, Zhang X, Qi Z, Xu F, Lei X, Cao Y, Chow WS, Sun G (2016) Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.). Sci Rep 6:23098CrossRefPubMedPubMedCentralGoogle Scholar
  50. Minibayeva F, Dmitrieva S, Ponomareva A, Ryabovol V (2012) Oxidative stress-induced autophagy in plants: the role of mitochondria. Plant Physiol Biochem 59:11–19CrossRefPubMedGoogle Scholar
  51. Monshausen G, Bibikova T, Messerli M, Shi C, Gilroy S (2007) Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. PNAS 104:20996–21001CrossRefPubMedGoogle Scholar
  52. Moreno N, Bougourd S, Haseloff J, Feijó JA (2006) Imaging plant cells. In: Pawley J (ed) Handbook of biological confocal microscopy. Springer, Boston, pp 769–787CrossRefGoogle Scholar
  53. Palavan-Unsal N, Buyuktuncer ED, Tufekci MA (2005) Programmed cell death in plants. J Cell Mol Biol 4:9–23Google Scholar
  54. Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B (2002) The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci 163:361–367CrossRefGoogle Scholar
  55. Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59:435–444CrossRefPubMedGoogle Scholar
  56. Robinson E, Kristen U (1982) Membrane flow via the Golgi apparatus of higher plant cells. Int Rev Cytol 77:89–127CrossRefGoogle Scholar
  57. Roland JC, Vian B (1991) General preparation and staining of thin sections. In: Hall JL, Hawes C (eds) Electron microscopy of plant cells. Academic, London, pp 1–66Google Scholar
  58. Rost TL, Baum SF, Nichol S (1996) Root apical organization in Arabidopsis thaliana ecotype “WS” and a comment on root cap structure. Plant Soil 187:91–95CrossRefGoogle Scholar
  59. Sauer M, Paciorek T, Benková E, Friml J (2006) Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat Protoc 1:98CrossRefPubMedGoogle Scholar
  60. Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana. Appl Environ Microbiol 69:490–494CrossRefPubMedPubMedCentralGoogle Scholar
  61. Scheres B, Benfey P, Dolan L (2002) Root development. In: The Arabidopsis book, vol 1. American Society of Plant Biologists, RockvilleGoogle Scholar
  62. Shargil D, Zemach H, Belausov E, Lachman O, Kamenetsky R, Dombrovsky A (2015) Development of a fluorescent in situ hybridization (FISH) technique for visualizing CGMMV in plant tissues. J Virol Methods 223:55–60CrossRefPubMedGoogle Scholar
  63. Skulachev VP, Bakeeva LE, Chernyak BV et al (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol Cell Biochem 256/257:341–358CrossRefGoogle Scholar
  64. Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331CrossRefPubMedGoogle Scholar
  65. Steer MW (1991) Quantitative morphological analyses. In: Hall JL, Hawes C (eds) Electron microscopy of plant cells. Academic, London, pp 85–104CrossRefGoogle Scholar
  66. Stefanowska M, Kuras M, Kacperska A (2002) Low temperature induced modifications in cell ultrastructure and localization of phenolics in winter oilseed rape (Brassica napus L. var. oleifera L.) leaves. Ann Bot 90:637–645CrossRefPubMedPubMedCentralGoogle Scholar
  67. Suksungworn R, Srisombat N, Bapia S, Soun-Udom M, Sanevas N, Wongkantrakorn N, Kermanee P, Vajrodaya S, Duangsrisai S (2017) Coumarins from Haldina cordifolia lead to programmed cell death in giant mimosa: potential bio-herbicides. Pak J Bot 49:1173–1183Google Scholar
  68. Tao L, van Staden J, Cress WA (2000) Salinity induced nuclear and DNA degradation in meristematic of soybean (Glycine max (L.)) roots. Plant Growth Regul 30:49–54CrossRefGoogle Scholar
  69. Tian Q, Zhang X, Yang A, Wang T, Zhang W-H (2016) CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. Plant Sci 246:70–79CrossRefPubMedGoogle Scholar
  70. Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauqui J-C (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20:1494–1503CrossRefPubMedPubMedCentralGoogle Scholar
  71. Vaškebová L, Šamaj J, Ovečka M (2017) Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1–3 affects overall actin organization, root growth and plant development. Ann Bot 00:1–13Google Scholar
  72. Vaughn KC (2006) The abnormal cell plates formed after microtubule disrupter herbicide treatment are enriched in callose. Pest Biochem Physiol 84:63–71CrossRefGoogle Scholar
  73. Vaughn KC, Hoffman JC, Hahn MG, Staehelin LA (1996) The herbicide dichlobenil disrupts cell plate formation: inmunogold characterization. Protoplasma 194:117–132CrossRefGoogle Scholar
  74. Verma DP (2001) Cytokinesis and building of the cell plate in plants. Annu Rev Plant Physiol Plant Mol Biol 52:751–784Google Scholar
  75. Vladimirov YA, Olenev VI, Suslova TB, Cheremisina ZP (1980) Lipid peroxidation in mitochondrial membranes. Adv Lipid Res 17:173–249CrossRefPubMedGoogle Scholar
  76. Wiederschain GY (2011) A guide to fluorescent probes and labeling technologies. In: Johnson I, Spence M (eds) The molecular probes handbook, vol 76. Biochemistry, Moscow, pp 1276–1276Google Scholar
  77. Wilson SM, Bacic A (2012) Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes. Nat Protoc 7:1716–1727CrossRefPubMedGoogle Scholar
  78. Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion – an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610CrossRefPubMedGoogle Scholar
  79. Zhang R, Wise RR, Struck KR, Sharkey TD (2010) Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth Res 105:123–134CrossRefPubMedGoogle Scholar
  80. Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8CrossRefGoogle Scholar
  81. Zheng Y, Zhang H, Deng X, Liu J, Chen H (2017) The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells. Sci Rep 7:41245CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhou J, Wang J, Yu J-Q, Chen Z (2014) Role and regulation of autophagy in heat stress responses of tomato plants. Front Plant Sci 5:174PubMedPubMedCentralGoogle Scholar
  83. Zhu T, Rost TL (2000) Directional cell-to-cell communication in the Arabidopsis root apical meristem. III. Plasmodesmata turnover and apoptosis in meristem and root cap cells during four weeks after germination. Protoplasma 213:99–107CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Adela M. Sánchez-Moreiras
    • 1
  • Marianna Pacenza
    • 2
  • Fabrizio Araniti
    • 3
  • Leonardo Bruno
    • 2
    Email author
  1. 1.Department of Plant Biology and Soil ScienceUniversity of VigoVigoSpain
  2. 2.Department of Biology, Ecology and Earth ScienceUniversity of CalabriaArcavacata di RendeItaly
  3. 3.Department AgrariaMediterranea UniversityReggio CalabriaItaly

Personalised recommendations