Advertisement

Flow Cytometry: Cell Cycle

  • Teodoro Coba de la Peña
  • Adela M. Sánchez-Moreiras
Chapter

Abstract

Quantitative analyses of cell cycle can give essential information about the response of plants to short- or long-term abiotic or biotic stress, as most species alter leaf expansion or root growth as one of the first responses to cope with adverse environmental conditions (Boyer 1982). Tardieu and Granier (2000) observed a reduction of leaf area under water and light deficits due to partial blockage of nuclei in G1, which increased cell cycle duration and decreased final cell number. This effect can be detected shortly after the application of the stress and, sometimes, does not alter the photosynthetic rate, as is independent of carbon metabolism.

References

  1. Barow M, Jovtchev G (2007) Endopolyploidy in plants and its analysis by flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag GmbH, Weinheim, pp 349–372CrossRefGoogle Scholar
  2. Bergounioux C, Brown SC (1990) Plant cell cycle analysis with isolated nuclei. Methods Cell Biol 33:563–573CrossRefPubMedGoogle Scholar
  3. Bergounioux C, Perennes C, Brown SC, Sarda C, Gadal P (1988) Nuclear RNA quantification in protoplast cell cycle phases. Cytometry 9:84–87CrossRefPubMedGoogle Scholar
  4. Bergounioux C, Brown SC, Petit P (1992) Flow cytometry and plant protoplast cell biology. Physiol Plant 85:374–386CrossRefGoogle Scholar
  5. Boyer JS (1982) Plant productivity and environment. Science 218:443–448CrossRefPubMedGoogle Scholar
  6. Cappella P, Gasparri F, Pulici M, Moll J (2008) A novel method based on click chemistry, which overcomes limitations of cell cycle analysis by classical determination of BrdU incorporation, allowing multiplex antibody staining. Cytometry A 73:626–636CrossRefPubMedGoogle Scholar
  7. Chauhan LKS, Saxena PN, Gupta SK (1999) Cytogenetic effects of cypermethrin and fenvalerate on the root meristem cells of Allium cepa. Environ Exp Bot 42:181–189CrossRefGoogle Scholar
  8. Chiatante D, Rocco M, Maiuro L, Scippa GS, Di Martino C, Bryant JA (1997) Cell division and DNA topoisomerase I activity in root meristems of pea seedlings during water stress. Plant Biosyst 131:163–173CrossRefGoogle Scholar
  9. Coba de la Peña T, Brown S (2001) Flow cytometry. In: Hawes C, Satiat-Jeunemaitre B (eds) Plant cell biology: a practical approach. Oxford University Press, OxfordGoogle Scholar
  10. Coba de la Peña T, Sánchez-Moreiras AM (2001) Flow cytometry: cell cycle. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, The Netherlands, pp 65–80CrossRefGoogle Scholar
  11. Cookson SJ, Granier C (2006) A dynamic analysis of the shade-induced plasticity in Arabidopsis thaliana rosette leaf development reveals new components of the shade-adaptative response. Ann Bot 97:443–452CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cuq F, Brown SC, Petitprez M, Alibert G (1995) Effects of monocerin on cell cycle progression in maize root meristems synchronised with aphidicolin. Plant Cell Rep 15:138–142CrossRefPubMedGoogle Scholar
  13. Dayan FE, Hernández A, Allen SN, Moraes RM, Vroman JA, Avery MA, Duke SO (1999) Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry 50:607–614CrossRefGoogle Scholar
  14. Doležel J, Cíhalíková J, Weiserová J, Lucretti S (1999) Cell cycle synchronisation in plant root meristems. Methods Cell Sci 21:95–107CrossRefPubMedGoogle Scholar
  15. Francis D (2009) What’s new in the plant cell cycle? In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany. Springer-Verlag, Berlin, pp 33–49CrossRefGoogle Scholar
  16. Freeman JL, Rayburn AL (2006) Aquatic herbicides and herbicide contaminants: in vitro cytotoxicity and cell-cycle analysis. Environ Toxicol 21:256–263CrossRefPubMedGoogle Scholar
  17. Galbraith DW (1989) Analysis of higher plants by flow cytometry and cell sorting. Int Rev Cytol 116:165–228CrossRefGoogle Scholar
  18. Glab N, Labidi B, Qin L-X, Trehin C, Bergounioux C, Meijer L (1994) Olomoucine, an inhibitor of the cdc2/cdk2 kinases activity, blocks plant cells at the G1 to S and G2 to M cell cycle transitions. FEBS Lett 353:207–211CrossRefPubMedGoogle Scholar
  19. Graña E, Sotelo T, Díaz-Tielas C, Araniti F, Krasuska U, Bogatek R, Reigosa MJ, Sánchez-Moreiras AM (2013) Citral induces auxin-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J Chem Ecol 39:271–282CrossRefPubMedGoogle Scholar
  20. Granier C, Cookson SJ, Tardieu F (2007) Cell cycle and environmental stresses. In: Inzé D (ed) Cell cycle control and development. Blackwell Publishing Ltd, Oxford, pp 335–355CrossRefGoogle Scholar
  21. Gray JW, Dolbeare F, Pallavicini MG (1990) Quantitative cell-cycle analysis. In: Melamed MR, Lindmo T, Mendelshon ML (eds) Flow cytometry and sorting. Wiley, New YorkGoogle Scholar
  22. Grunwald D (1993) Flow cytometry and RNA studies. Biol Cell 78:27–30CrossRefPubMedGoogle Scholar
  23. Haugland RP (1996) Handbook of fluorescent probes and research chemicals. Molecular Probes Inc., EugeneGoogle Scholar
  24. Kim KH, Sederstrom JM (2015) Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol 111:28.6.1–28.6.11CrossRefGoogle Scholar
  25. Lee JH, Arumuganathan K, Kaepler SM, Kaepler HF, Papa CM (1996) Cell synchronisation and isolation of metaphase chromosomes from maize (Zea mays L.) root tips for flow cytometry analysis and sorting. Genome 39:697–703CrossRefPubMedGoogle Scholar
  26. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51CrossRefPubMedGoogle Scholar
  27. Marie D, Simon N, Guillou L, Partensky F, Vaulot D (2000) DNA/RNA analysis of phytoplankton by flow cytometry. In: Robinson JP, Darzynkiewicz Z, Dobrucki J, Hyun W, Nolan J et al (eds) Current protocols in cytometry, pp 11.12.1–11.12.14Google Scholar
  28. O’Donnell EA, Ernst DN, Hingorani R (2013) Multiparameter flow cytometry: advances in high resolution analysis. Immune Netw 13:43–54CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oliva A, Moraes RM, Watson SB, Duke SO, Dayan FE (2002) Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pest Biochem Physiol 72:45–54CrossRefGoogle Scholar
  30. Onelli E, Citterio S, O’Connor JE, Levi M, Sgorbati S (1997) Flow cytometry and immunocharacterization with proliferating cell nuclear antigen of cycling and non-cycling cells in synchronised pea root tips. Planta 202:188–195CrossRefPubMedGoogle Scholar
  31. Packa D (1997) Cytogenetic effects of Fusarium mycotoxin on root tip cells of rye (Secale cereale L.), wheat (Triticum aestivum L.) and fields bean (Vicia faba L. var. Minor). J Appl Genet 38:259–272Google Scholar
  32. Packa D (1998) Potential genotoxicity of Fusarium mycotoxins in Vicia and Pisum cytogenetic tests. J Appl Genet 39:171–192Google Scholar
  33. Petit JM, Denis-Gay M, Ratinaud MH (1993) Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Biol Cell 78:1–13CrossRefPubMedGoogle Scholar
  34. Planchais S, Glab N, Tréhin C, Perennes C, Bureau J-M, Meijer L, Bergounioux C (1997) Roscovitine, a novel cyclin-dependent kinase inhibitor, characterizes restriction point and G2/M transition in tobacco BY-2 cell suspension. Plant J 12:191–202CrossRefPubMedGoogle Scholar
  35. Planchais S, Glab N, Inzé D, Bergounioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83CrossRefPubMedGoogle Scholar
  36. Robinson JP, Darzynkiewicz Z, Dean PN, Hibbs AR, Orfao A, Rabinovitch PS, Wheeless LL, Galbraith DW, Lambert GM, Macas J, Dolezel J (1997) Analysis of nuclear DNA content and ploidy in higher plants. Curr Protoc Cytom 2(1):7.6.1–7.6.22Google Scholar
  37. Sánchez-Moreiras AM, Coba de la Peña T, Reigosa MJ (2006) Cell cycle analyses for understanding growth inhibition. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy. A physiological process with ecological implications. Springer Academic Publishers, Dordrecht, pp 451–463Google Scholar
  38. Sánchez-Moreiras AM, Coba de la Peña T, Reigosa MJ (2008) The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69:2172–2179CrossRefPubMedGoogle Scholar
  39. Schuppler U, He PH, John PCL, Munns R (1998) Effect of water stress on cell division and cell-division-cycle 2-like cell cycle kinase activity in wheat leaves. Plant Physiol 117:667–678CrossRefPubMedPubMedCentralGoogle Scholar
  40. Scofield S, Jones A, Murray JAH (2014) The plant cell cycle in context. J Exp Bot 65:2557–2562CrossRefPubMedGoogle Scholar
  41. Segers G, Gadisseur I, Bergounioux C, De AEJ, Jacqmard A, Montagu MW, Inzé D (1996) The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G sub (2) phases of the cell cycle. Plant J 10:601–612CrossRefPubMedGoogle Scholar
  42. Suda J, Trávníček P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytometry A 69A:273–280Google Scholar
  43. Tardieu F, Granier C (2000) Quantitative analysis of cell division in leaves: methods, developmental patterns and effects of environmental conditions. Plant Mol Biol 43:555–567CrossRefPubMedGoogle Scholar
  44. Wisniewska H, Chelkowski J (1994) Influence of deoxynivalenol on mitosis of root tip cells of wheat seedlings. Acta Physiol 16:159–162Google Scholar
  45. Wonisch A, Tausz M, Müller M, Weidner W, De Kok LJ, Grill D (1999) Treatment of young spruce shoots with SO2 and H2S: effects on fine root chromosomes in relation to changes in the thiol content and redox state. Water Air Soil Poll 116:423–428CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Teodoro Coba de la Peña
    • 1
  • Adela M. Sánchez-Moreiras
    • 2
  1. 1.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  2. 2.Department of Plant Biology and Soil ScienceUniversity of VigoVigoSpain

Personalised recommendations