Rocky Coast in Catalonia

  • Isabel Montoya-Montes
  • María José Sánchez-García
  • Ignacio Alonso
  • Mariona Casamayor
  • Inmaculada Rodríguez Santalla


Rocky coasts, widely present along the world shorelines, have been studied from different points of view. Some sectors of rocky coast at Catalonia has been mapped and described by several authors along time. This paper includes a revision of those studies and analyzes some topographical data in order to obtain a global geomorphological characterization of rocky coast including also its relation with other environmental factors such as waves, precipitations and lithology. Remarkable differences between North and South regions have been reported. Moreover, because of the importance of rock fall events as a process affecting this areas, one example of susceptibility analysis to rock fall at Tarragona coast has been presented.


  1. Amblás, D., Canals, M., Urgeles, R., Lastras, G., Liquete, C., & Hughes-Clarke, J. E., et al. (2006). Morphogenetic mesoscale analysis of the northeastern Iberian margin, NW Mediterranean Basin. Marine Geology, 234, 3–20.Google Scholar
  2. Ballesteros, E., Torras, X., Pinedo, S., García, M., Mangialajo, L., & de Torres, M. (2007). A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. Marine Pollution Bulletin, 55, 172–180.CrossRefGoogle Scholar
  3. Barbaza, Y. (1970). Morphologie des secteurs rocheaux du littoral catalan septentrional. Memories et documents, Service de Documentation et de Cartographie Géographiques. Nouvelle série, vol. II. Ed. Centre National de la Recherche Scientifique. Paris, 150 pp.Google Scholar
  4. Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189–236.CrossRefGoogle Scholar
  5. Benjamin, J., Rovere, A., Fontana, A., Furlani, S., Vacchi, M., & Inglis, R. H., et al. (2017). Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Quaternary International, 449, 29–57.Google Scholar
  6. Bolaños, R., Jorda, G., Cateura, J., Lopez, J., Puigdefabregas, J., & Gomez, J., et al. (2009). The XIOM: 20 years of a regional coastal observatory in the Spanish Catalan coast. Journal of Marine Systems, 77, 237–260.Google Scholar
  7. Bolaños, R., & Sáchez-Arcilla, A. (2006). A note on nearshore wave features. Implications for wave generation. Progress in Oceanography, 70, 168–180.CrossRefGoogle Scholar
  8. Bowman, D., Guillén, J., López, J., & Pellegrino, V. (2009). Planview geometry and morphological characteristics of pocket beaches on the Catalan coast (Spain). Geomorphology, 108, 191–199.CrossRefGoogle Scholar
  9. Butzer, K. (1964). Pleistocene geomorphology and stratigraphy of the Costa Brava Region, Catalonia. Abhandlungen, Akademie der Wissenschaften und der Literatur (Mainz). Mathematisch Naturwissenschaftliche Klasse, 1, 1–51.Google Scholar
  10. Calvet, J., & Gallart, F. (1973). Esquema morfologico de la Costa Catalana. Acta Geologica Hispanica, 8, 125–130.Google Scholar
  11. Campins, J., Genovés, A., Picornell, M. A., & Jansà, A. (2011). Climatology of Mediterranean cyclones using the ERA-40 dataset. International Journal of Climatology, 31, 1596–1614.Google Scholar
  12. Carrara, A., Cardinali, M., Guzzetti, F., & Reichenbach, P. (1995). GIS technology in mapping landslide hazard. In A. Carrara & F. Guzzetti (Eds.), Geographical information systems in assessing natural hazards. The Netherlands: Kluwer Academic Publisher.CrossRefGoogle Scholar
  13. Casas-Prat, M., & Sierra, J. P. (2012). Trend analysis of wave direction and associated impacts on the Catalan coast. Climatic Change, 115, 667–691.CrossRefGoogle Scholar
  14. Catalonian Meteorological Service. (2018). Historical data. Accessed February 28, 2018.
  15. Cateura, J., Sanchez-Arcilla, A., Bolaños-Sanchez, R., & Sairouni, A. (2004). Atmospheric conditions during severe wave storms in the north-western Mediterranean. Generation, evolution, decay and implications. In 37th CIESM Congress, Barcelona, Spain.Google Scholar
  16. Clavell, E., & Berastegui, X. (1991). Petroleum geology of the Gulf of Valencia. In A. M. Spencer (Ed.), Generation, accumulation and production of Europe’s hydrocarbons (Spec Publ Eur Assoc Pet Geosci Vol. 1, pp. 355–368).Google Scholar
  17. CSN. (2001). Proyecto Datación (p. 159). Madrid: Consejo de Seguridad Nuclear.Google Scholar
  18. Daura, J., Sanz, M., Fornós, J. J., Asensio, A., & Julià, R. (2014). Karst evolution of the Garraf Massif (Barcelona, Spain): Doline formation, chronology and archaeo-palaeontological archives. Journal of Cave and Karst Studies, 76(2), 69–87.CrossRefGoogle Scholar
  19. Duran, R., Canals, M., Sanz, J. L., Lastras, G., Amblas, D., & Micallef, A. (2014). Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea. Geomorphology, 204, 1–20.CrossRefGoogle Scholar
  20. Fernández-López, S. R. (2001). Upper Bathonian ammonites of the Catalan Basin (Tivissa and Cap Salou, Spain). Hantkeniana, 3, 25–39.Google Scholar
  21. Ferrer, F. J. (1993). Recomendaciones para el cálculo hidrometeorológico de avenidas (p. 76). Madrid: CEDEX. Ministerio de Fomento.Google Scholar
  22. Ferrer Gijón, M., García López-Davalillo, J. C., González de Vallejo, L. I., Rodríguez Franco, J. A., Estévez Martín, H., & Trimboli, M. (2004). Análisis del impacto de los riesgos geológicos en España. Evaluación de pérdidas por terremotos e inundaciones en el periodo 1987-2001 y estimación para el periodo 2004-2033. Technical Report. Instituto Geológico y Minero de España, Madrid, Spain, 103 pp.Google Scholar
  23. Font Tullot, I. (2000). Climatología de España y Portugal (p. 422). Salamanca: Ediciones Universidad Salamanca.Google Scholar
  24. Furlani, S., Pappalardo, M., Gomez-Pujol, L., & Chelli, A. (2014). The rock coast of the mediterranean and black seas. In D. M. Kennedy, et al. (Eds). Rock coast geomorphology: A global synthesis. London, UK: Geological Society, London Memoirs 40.Google Scholar
  25. GENCAT—Generalitat de Catalunya. (2015). Manual dels hàbitats litorals de Catalunya. Dept. de Territori i Sostenibilitat. Generalitat de Catalunya. Barcelona, 251 pp.Google Scholar
  26. Guedes Soares, C., Carretero-Albiach, J. C., Weisse, R., & Alvarez-Fanjul, E. (2002). A 40 years hindcast of wind, sea level and waves in European waters. In Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering (pp. 669–675).Google Scholar
  27. Hudson, J. A. (1992). Rock engineering systems: Theory and practice (p. 185). Chichester: Ellis Horwood.Google Scholar
  28. ICC—Intitut Cartogràfic de Catalunya. (2002). Mapa geològic de Catalunya 1:250.000. Institut Cartogràfic de Catalunya. Barcelona, Spain.Google Scholar
  29. ICC-IGC-GENCAT-IGME. (2006). Mapa geològic de Catalunya 1:50.000. Institut Cartogràfic de Catalunya – Institut Geològic de Catalunya – Generalitat de Catalunya – Instituto Geológico y Minero de España, Barcelona, Spain.Google Scholar
  30. ICGC. (2010). Atles geològic de Catalunya (p. 463). Barcelona, Spain: Institut Geològic de Catalunya.Google Scholar
  31. ICGC. (2017). Mapa per a la Prevenció de Riscos Geològics 1:25.000. Dept. de Territori i Sostenibilitat. Generalitat de Catalunya, Barcelona.Google Scholar
  32. IGME. (2005). Mapa geomorfológico de España y del margen continental. Escala 1: 1.000.000. Instituto Geológico y Minero de España, Madrid, Spain.Google Scholar
  33. IGME—Instituto Geológico y Minero de España. (1972). Mapa Geológico de España. 1: 200000. Síntesis de la Cartografía existente. Tarragona. Instituto Geológico y Minero de España, Madrid, Spain.Google Scholar
  34. Jiménez, J. A., Valdemoro, H. I., Gracia, V., & Sánchez-Arcilla, A. (2000). Estudio sobre la situación del tramo costero Cambrils-Vandellós (T.M. Mont-Roig del Camp). Evolución costera y dinámica litoral. Technical Report. Universitat Politécnica de Catalunya. Barcelona.Google Scholar
  35. Kline, S. W., Adams, P. N., & Limber, P. W. (2014). The unsteady nature of sea cliff retreat due to mechanical abrasion, failure and comminution feedbacks. Geomorphology, 219, 53–67.CrossRefGoogle Scholar
  36. Lambeck, K., Woodroffe, C. D., Antonioli, F., Anzidei, M., Gehrels, W. R., & Laborel, J., et al. (2010). Paleoenvironmental records, geophysical modeling, and reconstruction of sea-level trends and variability on centennial and longer timescales. In J. A. Church, et al. (Eds.), Understanding sea-level rise and variability. Oxford, UK: Wiley.Google Scholar
  37. Lim, M., Rosser, N. J., Allison, R. J., & Petley, D. N. (2010). Erosional processes in the hard rock coastal cliffs at Staithes, North Yorkshire. Geomorphology, 114(1–2), 12–21.CrossRefGoogle Scholar
  38. Liquete, C., Canals, M., Ludwig, W., & Arnau, P. (2009). Sediment discharge of the rivers of Catalunya, NE Spain, and the influence of human impacts. Journal of Hydrology, 366, 76–88.CrossRefGoogle Scholar
  39. Llasat, M. C., López, L., Barnolas, M., & Llasat-Botija, M. (2008). Flash-floods in Catalonia: The social perception in a context of changing vulnerability. Advances in Geosciences, 17, 63–70.CrossRefGoogle Scholar
  40. López-Bermúdez, F., & Gomáriz-Castillo, F. (2006). Las ramblas, agentes reguladores del litoral mediterráneo ibérico. El ejemplo de la rambla de Las Moreras. Murcia. In E. Sanjaume & J. Mateu (Eds.), Geomorfología Litoral i Quaternari. Homenatge al Prof. V.M. Rosselló i Verger. Universitat de València, Valencia.Google Scholar
  41. MAPAMA—Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. (2013). Guía de Playas de España.Google Scholar
  42. Mariani, S., Cefali, M. D., Terradas, M., Chappuis, E., & Ballesteros, E. (2014). Using catenas for GIS-based mapping of NW Mediterranean littoral habitats. Estuarine, Coastal and Shelf Science, 147, 56–67.CrossRefGoogle Scholar
  43. Martínez, M. D., Lana, X., Burgueño, A., & Serra, C. (2007). Spatial and temporal daily rainfall regime in Catalonia (NE Spain) derived from four precipitation indices, years 1950–2000. International Journal of Climatology, 27, 123–138.CrossRefGoogle Scholar
  44. Martín-Vide, J., & López-Bustins, J. A. (2006). The Western mediterranean oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology, 26, 1455–1475.CrossRefGoogle Scholar
  45. Masana, E. (1995). L’activitat neotectònica a les Cadenes Costero Catalanes. Ph.D. thesis, Universidad de Barcelona, 444 pp.Google Scholar
  46. Mendoza, E., & Jiménez, J. A. (2008). Coastal storm classification on the Catalan littoral (NW Mediterranean). Ingeniería hidráulica en México, 23(2), 21–32.Google Scholar
  47. Millán, M., Estrela, M. J., & Caselles, V. (1995). Torrential precipitations on the Spanish east coast: The role of the mediterranean sea surface temperature. Atmospheric Research, 36, 1–16.CrossRefGoogle Scholar
  48. Ministerio de Fomento. (2011). SIOSE—Sistema de Información sobre Ocupación del Suelo de España. Accessed February 27, 2018.
  49. Montoya, I. (2008). Análisis de la susceptibilidad a los movimientos de ladera en los acantilados de la franja costera de Mont-Roig del Camp (Tarragona). Ph.D. Thesis. Universidad Rey Juan Carlos, Madrid, 198 pp.Google Scholar
  50. Montoya, I., Rodríguez, I., Sánchez, M. J., Alcántara-Carrió, J., Martín, S., & Gómez, D., et al. (2012). Mapping of landslide susceptibility at coastal cliffs. The Mont-Roig del Camp study case. Geologica Acta, 10(4), 439–455.Google Scholar
  51. MOPU. (1990). Instrucción 5.2-IC. Drenaje Superficial. Centro de publicaciones del Ministerio de Obras Públicas y Urbanismo, Madrid, 84 pp.Google Scholar
  52. Moreno-Bedmar, J. A., Robert, E., Matamales-Andreu, R., & Bover-Arnal, T. (2017). Review of the early Albian ammonites of the Montmell Formation near Marmellar (Salou-Garraf Basin, Tarragona, Catalonia, Spain). Carnets de Géologie, 17(1), 1–10.CrossRefGoogle Scholar
  53. Pastor, F., Estrela, M. J., Peñarrocha, D., & Millán, M. M. (2001). Torrential rains on the Spanish Mediterranean Coast: Modelling the effects of the sea surface temperature. Journal of Applied Meteorology, 40, 1180–1195.CrossRefGoogle Scholar
  54. Pirazzoli, P. A. (2005). A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea-level histories from the Mediterranean area. Quaternary Science Reviews, 24, 1989–2001.CrossRefGoogle Scholar
  55. Roca, E., Sans, M., Cabrera, L., & Marzo, M. (1999). Oligocene to Middle Miocene evolution of the Central Catalan margin (northwestern Mediterranean). Tectonophysics, 315, 209–233.CrossRefGoogle Scholar
  56. Sánchez-Arcilla, A., González-Marco, D., & Bolaños, R. (2008). A review of wave climate and prediction along the Spanish Mediterranean coast. Natural hazards and earth system sciences, 8, 1217–1228.CrossRefGoogle Scholar
  57. Solé, L. (1962). Le Quaternarie marin des Baléares et ses rapports avec les côtes méditerranéennes de la Péninsule Iberique. Quaternaria, 1, 309–342.Google Scholar
  58. Stephenson, W. J., Dickson, M. E., & Trenhaile, A. S. (2013). Rock coasts. In J. Shroder, & D. J. Sherman (Eds.), Treatise on geomorphology (Vol. 10), Coastal Geomorphology. San Diego, CA: Academic Press.Google Scholar
  59. Stephenson, W. J., Kirk, R. J., Hemmingsen, S. A., & Hemmingsen, M. A. (2010). Decadal scale micro erosion rates on shore platforms. Geomorphology, 114(1–2), 22–29.CrossRefGoogle Scholar
  60. Sunamura, T. (1992). Geomorphology of rocky coasts (p. 302). England: Willey.Google Scholar
  61. Sunamura, T. (2015). Rocky coast processes: With special reference to the recession of soft rock cliffs. In Proceedings of the Japan Academy. Series B, Physical and Biological Sciences (Vol. 91, No. 9, pp. 481–500).Google Scholar
  62. Témez, J. R. (1991). Extended and improved rational method. In Proceedings of XXIV IAHR Congress (Vol. A, pp. 33–40).Google Scholar
  63. Trenhaile, A. S. (1987). The geomorphology of rock coasts (p. 344). Oxford: Oxford University Press.Google Scholar
  64. Trenhaile, A. S. (2011). Cliffs and rock coasts. Treatise on Estuarine and Coastal Science, 3, 171–191.CrossRefGoogle Scholar
  65. Tucker, G. E., & Bras, R. L. (2000). A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resources Research, 36(7), 1953–1964.CrossRefGoogle Scholar
  66. Vegas, R. (1992). The Valencia trough and the origin of the Western Mediterranean basins. Tectonophysics, 203, 249–261.CrossRefGoogle Scholar
  67. Vilaplana, J. M. (2008). RISKCAT – Els riscos naturals a Catalunya. Informes del CADS 6. Consell Assessor per al Desenvolupament Sostenible. Generalitat de Catalunya, Barcelona, 74 pp.Google Scholar
  68. XIOM—Xarxa d’Instruments Oceanogràfics i Meteorològics de Catalunya. (2007). Boies d’onatge. Dades obtingudes l’any 2007. Technical Report. Generalitat de Catalunya, Barcelona, Spain.Google Scholar
  69. Young, A. P. (2018). Decadal-scale coastal cliff retreat in southern and central California. Geomorphology, 300, 164–175.CrossRefGoogle Scholar
  70. Young, A. P., Guza, R. T., Flick, R. E., O’Reilly, W. C., & Gutierrez, R. (2009). Rain, waves, and short-term seacliff evolution. Marine Geology, 267, 1–7.CrossRefGoogle Scholar
  71. Zazo, C., Goy, J. L., Dabrio, C. J., Bardají, T., Hillaire-Marcel, C., Ghaleb, B., et al. (2003). Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: Records of coastal uplift, sea-level highstands and climate changes. Marine Geology, 194, 103–133.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Isabel Montoya-Montes
    • 1
  • María José Sánchez-García
    • 1
  • Ignacio Alonso
    • 1
  • Mariona Casamayor
    • 1
  • Inmaculada Rodríguez Santalla
    • 2
  1. 1.Instituto de Oceanografía y Cambio Global, IOCAGUniversidad de Las Palmas de Gran Canaria, ULPGCLas Palmas de Gran CanariaSpain
  2. 2.Universidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations