Screening Strategies for Type 2 Diabetes and Risk Stratification in Minorities

  • Andre Pascal KengneEmail author
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


Type 2 diabetes mellitus (T2DM) is one of the fast-growing diseases of the modern and postmodern era, affecting people across the diversity of countries and ethnic groups worldwide. Undiagnosed and/or inappropriately managed, T2DM is associated with major complications including cardiovascular disease (CVD) and chronic kidney disease (CKD), which are driving the cost and morbimortality related to diabetes. The onset of T2DM, related complications, and progression can be prevented and delayed through timely diagnosis and implementation of effective interventions. For this to be cost-effective, appropriate strategies are needed to identify those who are more likely to benefit from further testing and interventions. Diabetes risk screening and risk stratification have developed in the last four decades, paralleling the improvement in the understanding of the natural history of the diseases and strategies for modifying it. While the initial focus was on biochemical tests, multivariable absolute risk prediction models which have flourished in the last two decades are gaining popularities in risk stratifications for diabetes and related major complications. While the principle of screening are the same across populations and settings, the performance of risk screening tools can vary across ethnic groups, reflecting differences in natural history of the diseases and other interfering factors. It is therefore important to assess the performance of existing tools and make necessary adaptations prior to their introduction in new populations.


Type 2 diabetes mellitus (T2DM) Screening Absolute risk model Validation Discrimination Calibration 


  1. 1.
    International Diabetes Federation. IDF Diabetes Atlas, 7th ed. Brussels: International Diabetes Federation; 2015.Google Scholar
  2. 2.
    Walker RJ, et al. Racial differences in spatial patterns for poor glycemic control in the Southeastern United States. Ann Epidemiol. 2018;28(3):153–9.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Selvin E, et al. Identifying trends in undiagnosed diabetes in U.S. adults by using a confirmatory definition: a cross-sectional study. Ann Intern Med. 2017;167(11):769–76.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Jang M, et al. Participation of racial and ethnic minorities in technology-based interventions to self-manage type 2 diabetes: a scoping review. J Transcult Nurs. 2018. Scholar
  5. 5.
    Sheehy A, et al. Minority status and diabetes screening in an ambulatory population. Diabetes Care. 2011;34(6):1289–94.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Tuomilehto J, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.CrossRefGoogle Scholar
  7. 7.
    Meigs JB, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359(21):2208–19.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Talmud PJ, et al. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ. 2010;340:b4838.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Park KS. The search for genetic risk factors of type 2 diabetes mellitus. Diabetes Metab J. 2011;35(1):12–22.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Asia Pacific Cohort Studies Collaboration. The effects of diabetes on the risks of major cardiovascular diseases and death in the Asia-Pacific region. Diabetes Care. 2003;26(2):360–6.CrossRefGoogle Scholar
  11. 11.
    World Health Organization. Screening for type 2 diabetes: report of a World Health Organization and International Diabetes Federation meeting. 2003.Google Scholar
  12. 12.
    Pan X-R, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393.PubMedCentralCrossRefGoogle Scholar
  14. 14.
    Diabetes Prevention Program Research Group. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes. 2005;54(4):1150.CrossRefGoogle Scholar
  15. 15.
    Unwin N, et al. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med. 2002;19(9):708–23.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Edelstein SL, et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes. 1997;46(4):701–10.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ramachandran A, et al. Significance of impaired glucose tolerance in an Asian Indian population: a follow-up study. Diabetes Res Clin Pract. 1986;2(3):173–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bertram MY, Vos T. Quantifying the duration of pre-diabetes. Aust N Z J Public Health. 2010;34(3):311–4.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Harris MI, et al. Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gerstein HC, et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract. 2007;78(3):305–12.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ramachandran A, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Echouffo-Tcheugui JB, et al. Screening for type 2 diabetes and dysglycemia. Epidemiol Rev. 2011;33(1):63–87.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Herron CA. Screening in diabetes mellitus: report of the Atlanta workshop. Diabetes Care. 1979;2(4):357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group Diabetes. 1979;28(12):1039–57.Google Scholar
  25. 25.
    American Diabetes Association. Screening for diabetes. Diabetes Care. 1989;12(8):588–90.CrossRefGoogle Scholar
  26. 26.
    World Health Organisation and International Diabetes Federation, Definition and diagnosis of diabetes and intermediate hyperglycemia: report of a WHO/IDF consultation. Geneva; 2006.Google Scholar
  27. 27.
    World Health Organisation Expert Consultation, use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO Consultation. WHO Press: Geneva; 2011. p. 25.Google Scholar
  28. 28.
    Kengne AP, et al. Alternative indices of glucose homeostasis as biochemical diagnostic tests for abnormal glucose tolerance in an African setting. Prim Care Diabetes. 2017;11(2):119–31.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cavagnolli G, et al. Effect of ethnicity on HbA1c levels in individuals without diabetes: systematic review and meta-analysis. PLoS One. 2017;12(2):e0171315.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    NCD Risk Factor Collaboration (NCD-RisC). Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331,288 participants. Lancet Diabetes Endocrinol. 2015;3(8):624–37.CrossRefGoogle Scholar
  31. 31.
    Selvin E. Are there clinical implications of racial differences in HbA1c? A difference, to be a difference, must make a difference. Diabetes Care. 2016;39(8):1462–7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Herman WH. Are there clinical implications of racial differences in HbA1c? Yes, to not consider can do great harm! Diabetes Care. 2016;39(8):1458–61.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97(4):1067–72.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sacks DB. Hemoglobin A1c and race: should therapeutic targets and diagnostic cutoffs differ among racial groups? Clin Chem. 2016;62(9):1199–201.PubMedCrossRefGoogle Scholar
  35. 35.
    Engelgau MM, Narayan KM, Herman WH. Screening for type 2 diabetes. Diabetes Care. 2000;23(10):1563–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Ziemer DC, et al. Random plasma glucose in serendipitous screening for glucose intolerance: screening for impaired glucose tolerance study 2. J Gen Intern Med. 2008;23(5):528–35.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Saudek CD, et al. A new look at screening and diagnosing diabetes mellitus. J Clin Endocrinol Metab. 2008;93(7):2447–53.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Borch-Johnsen K, et al. Screening for Type 2 diabetes--should it be now? Diabet Med. 2003;20(3):175–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim KS, et al. Diagnostic value of glycated haemoglobin HbA(1c) for the early detection of diabetes in high-risk subjects. Diabet Med. 2008;25(8):997–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Cheng C, Kushner H, Falkner BE. The utility of fasting glucose for detection of prediabetes. Metabolism. 2006;55(4):434–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Standards of medical care in diabetes--2010. Diabetes Care. 2010;33 Suppl 1:S11–61.Google Scholar
  42. 42.
    World Health Organization. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. Geneva: World Health Organization; 2011.Google Scholar
  43. 43.
    Gomez-Perez FJ, et al. HbA1c for the diagnosis of diabetes mellitus in a developing country. A position article. Arch Med Res. 2010;41(4):302–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Sacks DB, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2002;48(3):436–72.PubMedGoogle Scholar
  45. 45.
    Ko GT, et al. The reproducibility and usefulness of the oral glucose tolerance test in screening for diabetes and other cardiovascular risk factors. Ann Clin Biochem. 1998;35(Pt 1):62–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Priya M, et al. Comparison of capillary whole blood versus venous plasma glucose estimations in screening for diabetes mellitus in epidemiological studies in developing countries. Diabetes Technol Ther. 2011;13(5):586–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Rush E, Crook N, Simmons D. Point-of-care testing as a tool for screening for diabetes and pre-diabetes. Diabet Med. 2008;25(9):1070–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Ritchie GE, et al. Comparison of near-patient capillary glucose measurement and a risk assessment questionnaire in screening for type 2 diabetes in a high-risk population in rural India. Diabetes Care. 2011;34(1):44–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    American Diabetes Association. American diabetes alert. Diabetes Forecast. 1993;46(3):54–5.Google Scholar
  50. 50.
    Stern MP, et al. Predicting diabetes: moving beyond impaired glucose tolerance. Diabetes. 1993;42(5):706–14.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Herman WH, et al. A new and simple questionnaire to identify people at increased risk for undiagnosed diabetes. Diabetes Care. 1995;18(3):382–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;121(15):1768–77.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Moons K, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart. 2012. Scholar
  54. 54.
    Moons K, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012. Scholar
  55. 55.
    Buijsse B, et al. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev. 2011;33(1):46–62.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Noble D, et al. Risk models and scores for type 2 diabetes: systematic review. BMJ. 2011;343:d7163.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Thoopputra T, et al. Survey of diabetes risk assessment tools: concepts, structure and performance. Diabetes Metab Res Rev. 2012;28(6):485–98.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Brown N, et al. Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: a systematic review. Diabetes Res Clin Pract. 2012;98(3):369–85.PubMedCrossRefGoogle Scholar
  59. 59.
    Collins GS, et al. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9(1):103.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Glümer C, et al. Risk scores for type 2 diabetes can be applied in some populations but not all. Diabetes Care. 2006;29(2):410–4.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    de Sousa AGP, et al. Derivation and external validation of a simple prediction model for the diagnosis of type 2 diabetes mellitus in the Brazilian urban population. Eur J Epidemiol. 2009;24(2):101–9.CrossRefGoogle Scholar
  62. 62.
    Hanif M, et al. Detection of impaired glucose tolerance and undiagnosed type 2 diabetes in UK South Asians: an effective screening strategy. Diabetes Obes Metab. 2008;10(9):755–62.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bindraban NR, et al. Prevalence of diabetes mellitus and the performance of a risk score among Hindustani Surinamese, African Surinamese and ethnic Dutch: a cross-sectional population-based study. BMC Public Health. 2008;8(1):271.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Spijkerman AM, et al. The performance of a risk score as a screening test for undiagnosed hyperglycemia in ethnic minority groups: data from the 1999 health survey for England. Diabetes Care. 2004;27(1):116–22.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2008;31(Supplement 1):S55–60.CrossRefGoogle Scholar
  66. 66.
    Gao W, et al. A simple Chinese risk score for undiagnosed diabetes. Diabet Med. 2010;27(3):274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Balkau B, et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2008;31(10):2056–61.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Masconi KL, et al. Predictive modeling for incident and prevalent diabetes risk evaluation. Exp Rev Endocrinol Metab. 2015;10(3):277–84.CrossRefGoogle Scholar
  69. 69.
    Dhippayom T, Chaiyakunapruk N, Krass I. How diabetes risk assessment tools are implemented in practice: a systematic review. Diabetes Res Clin Pract. 2014;Google Scholar
  70. 70.
    Steyerberg EW, et al. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nucci LB, et al. A nationwide population screening program for diabetes in Brazil. Rev Panam Salud Publica. 2004;16(5):320–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Sargeant LA, et al. Who attends a UK diabetes screening programme? Findings from the ADDITION-Cambridge study. Diabet Med. 2010;27(9):995–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Whiting DR, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Haffner SM, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Colhoun HM, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–96.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Collins R, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361(9374):2005–16.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bulugahapitiya U, et al. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med. 2009;26(2):142–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gaede P, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Gaede P, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Echouffo-Tcheugui JB, Ogunniyi MO, Kengne AP, Estimation of absolute cardiovascular risk in individuals with diabetes mellitus: rationale and approaches. ISRN Cardiol. 2011. 2011: 242656.CrossRefGoogle Scholar
  81. 81.
    Stevens RJ, et al. The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin Sci (Lond). 2001;101(6):671–9.CrossRefGoogle Scholar
  82. 82.
    Kothari V, et al. UKPDS 60: risk of stroke in type 2 diabetes estimated by the UK Prospective Diabetes Study risk engine. Stroke. 2002;33(7):1776–81.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Asia Pacific Cohort Studies Collaboration. Systolic blood pressure, diabetes and the risk of cardiovascular diseases in the Asia-Pacific region. J Hypertens. 2007;25(6):1205–13.CrossRefGoogle Scholar
  84. 84.
    Asia Pacific Cohort Studies Collaboration. Cholesterol, diabetes and major cardiovascular diseases in the Asia-Pacific region. Diabetologia. 2007;50(11):2289–97.CrossRefGoogle Scholar
  85. 85.
    Asia Pacific Cohort Studies Collaboration. Smoking, diabetes and cardiovascular diseases in men in the Asia-Pacific Region. J Diabetes. 2009;1:173–81.CrossRefGoogle Scholar
  86. 86.
    Kengne AP, et al. Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants from four U.K. prospective cohort studies. Diabetes Care. 2012;35(2):396–403.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Coutinho M, et al. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999;22(2):233–40.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Selvin E, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.CrossRefGoogle Scholar
  89. 89.
    Miettinen H, et al. Retinopathy predicts coronary heart disease events in NIDDM patients. Diabetes Care. 1996;19(12):1445–8.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    van Hecke MV, et al. Diabetic retinopathy is associated with mortality and cardiovascular disease incidence: the EURODIAB prospective complications study. Diabetes Care. 2005;28(6):1383–9.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Targher G, et al. Retinopathy predicts future cardiovascular events among type 2 diabetic patients: the Valpolicella Heart Diabetes Study. Diabetes Care. 2006;29(5):1178.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Juutilainen A, et al. Retinopathy predicts cardiovascular mortality in type 2 diabetic men and women. Diabetes Care. 2007;30(2):292–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Chamnan P, et al. Cardiovascular risk assessment scores for people with diabetes: a systematic review. Diabetologia. 2009;52(10):2001–14.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    van Dieren S, et al. Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review. Heart. 2012;98(5):360–9.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Levey AS, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70.CrossRefGoogle Scholar
  96. 96.
    Levey AS, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53(4):766–72.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Levey AS, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Echouffo-Tcheugui JB, Kengne AP. Risk models to predict chronic kidney disease and its progression: a systematic review. PLoS Med. 2012;9(11):e1001344.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chien KL, et al. A prediction model for the risk of incident chronic kidney disease. Am J Med. 2010;123(9):836–846 e2.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Thakkinstian A, et al. A simplified clinical prediction score of chronic kidney disease: a cross-sectional-survey study. BMC Nephrol. 2011;12(1):45.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ando M, et al. A simple model for predicting incidence of chronic kidney disease in HIV-infected patients. Clin Exp Nephrol. 2011;15(2):242–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kwon KS, et al. A simple prediction score for kidney disease in the Korean population. Nephrology (Carlton). 2012;17(3):278–84.CrossRefGoogle Scholar
  103. 103.
    Rigatto C, Sood MM, Tangri N. Risk prediction in chronic kidney disease: pitfalls and caveats. Curr Opin Nephrol Hypertens. 2012;21(6):612–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Lin CC, et al. Development and validation of a risk prediction model for end-stage renal disease in patients with type 2 diabetes. Sci Rep. 2017;7(1):10177.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Dunkler D, et al. Risk prediction for early CKD in type 2 diabetes. Clin J Am Soc Nephrol. 2015;10(8):1371–9.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Elley CR, et al. Derivation and validation of a renal risk score for people with type 2 diabetes. Diabetes Care. 2013;36(10):3113–20.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wan EYF, et al. Prediction of new onset of end stage renal disease in Chinese patients with type 2 diabetes mellitus - a population-based retrospective cohort study. BMC Nephrol. 2017;18(1):257.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Woodward M, et al. Prediction of 10-year vascular risk in patients with diabetes: the AD-ON risk score. Diabetes Obes Metab. 2016;18(3):289–94.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Fraccaro P, et al. An external validation of models to predict the onset of chronic kidney disease using population-based electronic health records from Salford, UK. BMC Med. 2016;14:104.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Mogueo A, et al. Validation of two prediction models of undiagnosed chronic kidney disease in mixed-ancestry South Africans. BMC Nephrol. 2015;16:94.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Jardine MJ, et al. Prediction of kidney-related outcomes in patients with type 2 diabetes. Am J Kidney Dis. 2012. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Non-Communicable Diseases Research UnitSouth African Medical Research CouncilCape TownSouth Africa
  2. 2.Department of MedicineUniversity of Cape TownCape TownSouth Africa

Personalised recommendations