Indicators for the Expected Loss of Phylogenetic Diversity

  • Daniel P. FaithEmail author
  • Simon Veron
  • Sandrine Pavoine
  • Roseli Pellens


PD or “phylogenetic diversity” was proposed by Faith (Biol Conserv 61:1–10, 1992) as a measure of biodiversity “option value”, justifying its importance as a target of biodiversity conservation. The threats to phylogenetic diversity can be quantified by integrating PD with IUCN Red List categories and corresponding inferred extinction probabilities, to estimate amounts of threatened or imperilled PD. Practical conservation applications face decisions about which summaries of imperilled PD best provide priority setting among species and about how to use limited available data to estimate imperilled PD. Extensions of Weitzman’s phylogenetic “expected distinctiveness” provide a unifying foundation for many useful expected PD calculations. This reinforces the utility of expected PD calculations compared to methods in the EDGE programme. However, simplistic use of expected PD also has weaknesses. A resulting priority set of species may neglect other species that also could deserve conservation action. Improved priority setting might utilise conservative estimates of the reduction in extinction probability from conservation action. The priority ordering of a species has been equated with its order of selection in priority sets, but should instead reflect the lost opportunity in averting PD loss if there is no conservation action on that species. Species priorities can be estimated, under simple assumptions, even with the simple “evolutionary distinctiveness” (ED) information that is available for many species from the EDGE programme. This provides a simple approach to priority setting in which threatened species are simply ranked by their ED score, as an estimate of their averted PD loss if the species is conserved. The approximations also provide a tabulation of current total expected PD loss for a given taxonomic group. For biodiversity assessments by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, this approach indicated fractional imperilled PD varying from a low 8% for squamates to a high 65% for corals among the assessments for six major taxonomic groups.


  1. Barker GM (2002) Phylogenetic diversity: a quantitative framework for measurement of priority and achievement in biodiversity conservation. Biol J Linn Soc 76:165–194CrossRefGoogle Scholar
  2. Brooks TM, Akçakaya HR, Burgess ND, Butchart SHM, Hilton-Taylor C, Hoffmann M, Juffe-Bignoli D, Kingston N, MacSharry B, Parr M, Perianin L, Regan EC, Rodrigues ASL, Rondinini C, Shennan-Farpon Y, BE Y (2016a) Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci Data 3:160007 Scholar
  3. Brooks TM, Akçakaya HR, Burgess ND, Butchart SHM, Hilton-Taylor C, Hoffmann M, Juffe-Bignoli D, Kingston N, MacSharry B, Parr M, Perianin L, Regan EC, Rodrigues ASL, Rondinini C, Shennan-Farpon Y, Young BE (2016b) Data from: Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Dryad Digital Repository.
  4. Chassagnon IR, McCarthy CA, China YK-Y, Pinedaa SS, Keramidasd A, Moblie M, Phamb V, Michael De Silvab T, Lynchd JW, Widdop RE, Rasha LD, King GF (2017) Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc Natl Acad Sci 114(14):3750–3755. Scholar
  5. Chaudhary A, Pourfaraj V, Mooers AO (2017) Projecting global land use-driven evolutionary history loss. Divers Distrib 24(2):158–167CrossRefGoogle Scholar
  6. Daru BH, Yessoufou K, Mankga LT, Davies TJ (2013) A global trend towards the loss of evolutionarily unique species in mangrove ecosystems. PLoS One 8:e66686CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dıaz S et al (2015) The IPBES conceptual framework—connecting nature and people. Curr Opin Environ Sustain 14:1–16. Scholar
  8. EDGE of Existence (n.d.) ZSL, London
  9. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  10. Faith DP (2007) Probabilistic PD. Edge of existence. Available from (Accessed December 2007)
  11. Faith DP (2008) Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conserv Biol 22:1461–1470. Scholar
  12. Faith DP (2013) Biodiversity and evolutionary history: useful extensions of the PD phylogenetic diversity assessment framework. Ann N Y Acad Sci 1289:69–89CrossRefPubMedGoogle Scholar
  13. Faith DP (2015) Phylogenetic diversity and extinction: avoiding tipping points and worst-case losses from the tree of life. Philos Trans R Soc B 370:20140011CrossRefGoogle Scholar
  14. Faith DP (2017) A general model for biodiversity and its value. In: Garson J, Plutynski A, Sarkar S (eds) The Routledge handbook of philosophy of biodiversity Scholar
  15. Faith DP, Walker PA (1996a) Integrating conservation and development: incorporating vulnerability into biodiversity-assessment of areas. Biodivers Conserv 5:417–429CrossRefGoogle Scholar
  16. Faith DP, Walker PA (1996b) DIVERSITY – XD. In: Faith DP, Nicholls AO (eds) BioRap, rapid assessment of biodiversity. Volume three, tools for assessing biodiversity priority areas, pp 51–62Google Scholar
  17. Forest F, Crandal KAl, Chase MW, Faith DP (2015) Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philosophical Transactions of the Royal Society B: Biological Sciences 370 (1662):20140002-20140002Google Scholar
  18. Faith DP, Magallón S, Hendry AP, Conti E, Yahara T, Donoghue MJ (2010) Evosystem services: an evolutionary perspective on the links between biodiversity and human Well-being. Curr Opin Environ Sustain 2:66–74CrossRefGoogle Scholar
  19. Hartmann K, Steel M (2006) Maximizing phylogenetic diversity in biodiversity conservation: greedy solutions to the Noah’s ark problem. Syst Biol 55:644–651CrossRefPubMedGoogle Scholar
  20. Haskins C (1974) Scientists talk of the need for conservation and an ethic of biotic diversity to slow species extinction. Science 184:646–647CrossRefGoogle Scholar
  21. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS One 2:e296CrossRefPubMedPubMedCentralGoogle Scholar
  22. IUCN (1980) World Conservation Strategy: living resource conservation for sustainable development. International Union for Conservation of Nature and Natural Resources (IUCN), Gland, SwitzerlandGoogle Scholar
  23. Jensen EL et al (2016) I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation. PeerJ 4:e2350. Scholar
  24. Mooers AO, Faith DP, Maddison WP (2008) Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS One 3:e3700CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nunes LA, Turvey ST, Rosindell J (2015) The price of conserving avian phylogenetic diversity: a global prioritization approach. Philos Trans R Soc B 370:20140004. Scholar
  26. Pascual U et al (2017) Valuing nature’s contributions to people: the IPBES approach. Curr Opin Environ Sustain 26:7CrossRefGoogle Scholar
  27. Davies K, Rajvanshi A, Yeo-Chang Y, et al. in press. Chapter 2. Nature’s contributions to people and quality of life. In M. Karki et al., ed. IPBES Regional and subregional assessment of biodiversity and ecosystem services for Asia and the Pacific. Secretariat of the Intergovernmental Platform for Biodiversity and Ecosystem Services, Bonn, Germany.Google Scholar
  28. Redding DW, Mooers AO (2006) Incorporating evolutionary measures into conservation prioritization. Conserv Biol 20:1670–1678. Scholar
  29. Rosindell J, Harmon LJ (2012) OneZoom: a fractal explorer for the tree of life. PLoS Biol 10(10):e1001406CrossRefPubMedPubMedCentralGoogle Scholar
  30. Safi K, Armour-Marshall K, Baillie JEM, Isaac NJB (2013) Global patterns of evolutionary distinct and globally endangered amphibians and mammals. PLoS One 8(5):e63582CrossRefPubMedPubMedCentralGoogle Scholar
  31. Steel M, Mimoto A, Mooers AO (2007) Hedging one’s bets: quantifying a taxon’s expected contribution to future phylogenetic diversity. Evol Bioinformatics Online 3:237–244Google Scholar
  32. Thuiller W, Maiorano L, Mazel F, Guilhaumon F, Ficetola GF, Lavergne S, Renaud J, Roquet C, Mouillot D (2015) Conserving the functional and phylogenetic trees of life of European tetrapods. Philos Trans R Soc B 370:20140005CrossRefGoogle Scholar
  33. Tonini JFR, Beard KH, Ferreira RB, Jetz W, Pyron RA (2016) Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol Conserv 204:23–31CrossRefGoogle Scholar
  34. Volkmann L, Martyn I, Moulton V, Spillner A, Mooers AO (2014) Prioritizing populations for conservation using phylogenetic networks. PLoS One 9:e88945CrossRefPubMedPubMedCentralGoogle Scholar
  35. Weitzman ML (1992) On diversity. Q J Econ 107:363–405CrossRefGoogle Scholar
  36. Weitzman ML (1998) The Noah’s ark problem. Econometrica 66:1279–1298CrossRefGoogle Scholar
  37. Witting L, Loeschcke V (1995) The optimization of biodiversity conservation. Biol Conserv 71:205–207. Scholar
  38. Yessoufou K, Daru BH, Tafirei R, Elansary HO, Rampedi I (2017) Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. Ecol Evol 7:2735–2746CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniel P. Faith
    • 1
    Email author
  • Simon Veron
    • 2
  • Sandrine Pavoine
    • 3
  • Roseli Pellens
    • 2
  1. 1.The Australian Museum Research InstituteSydneyAustralia
  2. 2.Institut de Systématique, Evolution, Biodiversité (ISYEB - UMR 7205) - Muséum National d’ Histoire Naturelle, CNRSSorbonne Université, EPHE CP 51ParisFrance
  3. 3.Centre d’Ecologie et des Sciences de la Conservation (CESCO UMR7204), Sorbonne Universités, MNHN, CNRS, UPMC, CP51, UMR 7204ParisFrance

Personalised recommendations