Advertisement

Phylogenetic Diversity and Conservation Evaluation: Perspectives on Multiple Values, Indices, and Scales of Application

  • Daniel P. Faith
Chapter

Abstract

“Phylogenetic diversity” and its abbreviation “PD” have now become popular terms describing a fundamental aspect of biodiversity based on phylogeny. After more than 25 years of work on PD (following the 1992 paper in Biological Conservation), methods and applications have explored a wide range of taxonomic groups and geographic scales. PD provides a way to address biodiversity at the level of features or characteristics of species, based on its well-corroborated model linking phylogeny and feature variation. The quantification of feature diversity justifies PD as a measure of option value – the value of living variation in keeping options open for society. This justification for PD in biodiversity conservation gives attention to often-neglected arguments for the value to society of biotic diversity. These largely global option values are complemented by the “insurance” value of PD at the local ecosystem scale. Microbial applications of PD, particularly in human health studies, have successfully implemented a range of PD calculations, including PD dissimilarities among samples. Reduced microbial PD in the human body may indicate reduced resilience, and it is now associated with many human diseases. “Macrobial” ecology has been less successful in integrating PD into a consistent coherent approach. Here, the traditional recognition of many “diversity” indices has been extended to phylogeny. PD as a “biodiversity” measure is confounded with the multitude of phylogeny-based diversity indices describing various ecological factors. Greater integration among the different areas of PD application could better establish PD as a core biodiversity measure, with a shared toolbox providing a range of PD-related calculations.

References

  1. Ahrendsen DL, Aust SK, Roxanne Kellar P (2016) Biodiversity assessment using next-generation sequencing: comparison of phylogenetic and functional diversity between Nebraska grasslands. Plant Syst Evol 302:89–108CrossRefGoogle Scholar
  2. Bartkowski B (2017) Are diverse ecosystems more valuable? Economic value of biodiversity as result of uncertainty and spatial interactions in ecosystem service provision. Ecosyst Serv 24:50–57CrossRefGoogle Scholar
  3. Bassett SA, Young W, Barnett MPG, Cookson AL, McNabb WC, Roy NC (2015) Changes in composition of caecal microbiota associated with increased colon inflammation in interleukin-10 gene-deficient mice inoculated with Enterococcus species. Nutrients 7:1798–1816CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bullock JM, Dhanjal-Adams KL, Milne A, Oliver TH, Todman LC, Whitmore AP, Pywell RF (2017) Resilience and food security: rethinking an ecological concept. J Ecol 105:880–884CrossRefGoogle Scholar
  5. Cadotte MW (2013) Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc Natl Acad Sci U S A 110:8996–9000CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cadotte MW et al (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters 13 (1):96–105Google Scholar
  7. Cadotte MW, Davies JT (2010) Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers Distrib 16:376–385CrossRefGoogle Scholar
  8. Cadotte MW, Davies TJ (2016) Phylogenies in ecology: a guide to concepts and methods. Princeton University Press, Princeton ISBN 9780691157689CrossRefGoogle Scholar
  9. Cadotte MW, Davies TJ, Peres-Neto PR (2017) Why phylogenies do not always predict ecological differences. Ecological Monographs 87 (4):535–551Google Scholar
  10. Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci U S A 105:17012–17017CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4:e5695.  https://doi.org/10.1371/journal.pone.0005695CrossRefPubMedPubMedCentralGoogle Scholar
  12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carvalho SB, Velo-Antón G, Tarroso P, Portela AP, Barata M, Carranza S, Moritz C, Possingham HP (2017) Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat Ecol Evol 1:0151CrossRefGoogle Scholar
  14. Chao A, Chiu C-H, Jost L (2016) Phylogenetic diversity measures and their decomposition: a framework based on hill numbers. In: Pellens R, Grandcolas P (eds) Biodiversity conservation and phylogenetic systematics. Topics in biodiversity and conservation, vol 14. Springer International Publishing, Cham, pp 141–172.  https://doi.org/10.1007/978-3-319-22461-9_3CrossRefGoogle Scholar
  15. Chassagnon IR, McCarthy CA, Chin YK-Y, Pineda SS, Keramidas A, Mobli M, Pham V, De Silva TM, Lynch JW, Widdop RE, Rash LD, King GF (2017) Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc Natl Acad Sci U S A 114(14):3750–3755.  https://doi.org/10.1073/pnas.1614728114CrossRefPubMedPubMedCentralGoogle Scholar
  16. Convention on Biological Diversity and World Health Organization (2015) Connecting global priorities: biodiversity and human health summary of the state of knowledge review. UNEP, CBD, WHO, Montreal  https://doi.org/10.13140/RG.2.1.3679.6565
  17. Crozier RH (1992) Genetic diversity and the agony of choice. Biol Conserv 61:11–15CrossRefGoogle Scholar
  18. Davies K, Rajvanshi A, Yeo-Chang Y, et al. in press. Chapter 2. Nature’s contributions to people and quality of life. In M. Karki et al., ed. IPBES Regional and subregional assessment of biodiversity and ecosystem services for Asia and the Pacific. Secretariat of the Intergovernmental Platform for Biodiversity and Ecosystem Services, Bonn, Germany.Google Scholar
  19. Davies TJ, Buckley LB (2012) Exploring the phylogenetic history of contemporary mammal species richness. Glob Ecol Biogeogr 21:1096–1105.  https://doi.org/10.1111/j.1466-8238.2012.00759.xCrossRefGoogle Scholar
  20. Davies TJ, Urban MC, Rayfield B, Cadotte MW, Peres-Neto PR (2016) Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology 97:2212–2222CrossRefPubMedGoogle Scholar
  21. Ehrenfeld D (1970) Biological conservation. Holt Rinehart & Winston, New YorkGoogle Scholar
  22. Ehrlich P, Wilson EO (1991) Biodiversity studies science and policy. Science 253:758–762CrossRefPubMedGoogle Scholar
  23. Faith DP (1989) Homoplasy as pattern: multivariate analysis of morphological convergence in Anseriformes. Cladistics 5:235–258CrossRefGoogle Scholar
  24. Faith DP (1990) Chance marsupial relationships. Nature 345:393–394CrossRefGoogle Scholar
  25. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  26. Faith DP (1994a) Phylogenetic diversity: a general framework for the prediction of feature diversity. In: Forey PL, Humphries CJ, Vane-Wright RI (eds) Systematics and conservation evaluation, Systematics Association Special Volume No. 50. Clarendon Press, Oxford, pp 251–268Google Scholar
  27. Faith DP (1994b) Phylogenetic pattern and the quantification of organismal biodiversity. Philos Trans R Soc B 345:45–58CrossRefGoogle Scholar
  28. Faith DP (2013) Biodiversity and evolutionary history: useful extensions of the PD phylogenetic diversity assessment framework. Ann N Y Acad Sci 1289:69–89.  https://doi.org/10.1111/nyas.12186CrossRefPubMedGoogle Scholar
  29. Faith DP (2015) Phylogenetic diversity and extinction: avoiding tipping points and worst-case losses from the tree of life. Philos Trans R Soc Lond B 370:20140011CrossRefGoogle Scholar
  30. Faith DP (2016) Using phylogenetic dissimilarities among sites for biodiversity assessments and conservation. In: Pellens R, Grandcolas P (eds) Biodiversity conservation and phylogenetic systematics. Topics in biodiversity and conservation, vol 14. Springer International Publishing, Cham, pp 39–56.  https://doi.org/10.1007/978-3-319-22461-9_3CrossRefGoogle Scholar
  31. Faith DP (2017) A general model for biodiversity and its value. In: Garson J, Plutynski A, Sarkar S (eds) The Routledge handbook of philosophy of biodiversity. Routledge, London https://www.routledge.com/products/9781138827738Google Scholar
  32. Faith DP, Cranston PS (1991) Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structure. Cladistics 7:1–28CrossRefGoogle Scholar
  33. Faith DP, Cranston PS (1992) Probability, parsimony, and popper. Syst Biol 41:252–257CrossRefGoogle Scholar
  34. Faith DP, Richards ZT (2012) Climate change impacts on the tree of life: changes in phylogenetic diversity illustrated for Acropora corals. Biology 1(3):906–932CrossRefPubMedPubMedCentralGoogle Scholar
  35. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68CrossRefGoogle Scholar
  36. Faith DP, Reid CAM, Hunter J (2004) Integrating phylogenetic diversity, complementarity, and endemism. Conserv Biol 18:255–261CrossRefGoogle Scholar
  37. Faith DP, Lozupone C, Nipperess D, Knight R (2009) The cladistic basis for the phylogenetic diversity (PD) measure links evolutionary features to environmental gradients and supports broad applications of microbial ecology’s “phylogenetic beta diversity” framework. Int J Mol Sci 10(11):4723–4741CrossRefPubMedPubMedCentralGoogle Scholar
  38. Farnham TJ (2007) Saving nature’s legacy: origins of the idea of biological diversity. Yale University Press, New Haven 276 pGoogle Scholar
  39. Flynn D, Mirotchnick N, Jain M, Palmer M, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity-ecosystem function relationships. Ecology 98:1573–1581CrossRefGoogle Scholar
  40. Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches¸ S, van der Bank M, Reeves G, Hedderson TA, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760CrossRefPubMedGoogle Scholar
  41. Gascon C, Brooks TM, Contreras-MacBeath T, Heard N, Konstant W, Lamoreux J, Launay F, Maunder M, Mittermeier RA, Molur S, Mubarak RKA, Parr MJ, Rhodin AGJ, Rylands AB, Soorae P, Sanderson JG, Vié J-C (2015) The importance and benefits of species. Curr Biol 25:R431–R438CrossRefPubMedGoogle Scholar
  42. Gavin MC et al (2013) Toward a mechanistic understanding of linguistic diversity. BioScience 63:524–535CrossRefGoogle Scholar
  43. González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr N, Laffan SW, Miller JT, Rosauer DF, Faith DP, Nipperess DA, Kujala H, Linke S, Butt N, Külheim C, Crisp MD, Gruber B (2016) Phylogenetic approaches reveal biodiversity threats under climate change. Nat Clim Chang 6:1110–1114CrossRefGoogle Scholar
  44. Gudde R, Venditti C (2016) Comparison of conservation metrics in a case study of lemurs. Conserv Biol 30(6):1347–1356CrossRefPubMedGoogle Scholar
  45. Haskins C (1974) Scientists talk of the need for conservation and an ethic of biotic diversity to slow species extinction. Science 184:646–647CrossRefGoogle Scholar
  46. Iltis HH (1972) Shepherds leading sheep to slaughter: the extinction of species and the destruction of ecosystems. Am Biol Teach 34:201–205+221CrossRefGoogle Scholar
  47. IUCN (1980) World conservation strategy: living resource conservation for sustainable development. International Union for Conservation of Nature and Natural Resources (IUCN), Gland, SwitzerlandGoogle Scholar
  48. Kang D-W, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB et al (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8(7):e68322  https://doi.org/10.1371/journal.pone.0068322CrossRefPubMedPubMedCentralGoogle Scholar
  49. S. Khanna, E. Montassier, B. Schmidt, R. Patel, D. Knights, D. S. Pardi, P. C. Kashyap, (2016) Gut microbiome predictors of treatment response and recurrence in primary infection. Alimentary Pharmacology & Therapeutics 44 (7):715–727Google Scholar
  50. Kang D-W, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts A, Geis E, Maldonado J, McDonough-Means S, Pollard EL, Roux S, Sadowsky MJ, Lipson KS, Sullivan MB, Caporaso JG, Krajmalnik-Brown R (2017) Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5:10CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kelly S, Grenyer R, Scotland RW (2014) Phylogenetic trees do not reliably predict feature diversity. Divers Distrib 20:600CrossRefGoogle Scholar
  52. Laity T, Laffan SW, González-Orozco CE, Faith DP, Rosauer DF, Byrne M, Miller JT, Crayn D, Costion C, Moritz CC, Newport K (2015) Phylodiversity to inform conservation policy: an Australian example. Sci Total Environ 534:131–143CrossRefPubMedGoogle Scholar
  53. Lappan R et al (2018) A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol 18:13CrossRefPubMedPubMedCentralGoogle Scholar
  54. Larsen FW, Turner WR, Brooks TM et al (2012) Conserving critical sites for biodiversity provides disproportionate benefits to people. PLoS One 7:e36971CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lindegren M, Holt BG, MacKenzie BR, Rahbek C (2018) A global mismatch in the protection of multiple marine biodiversity components and ecosystem services. Sci Rep 8:4099CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lindheim L, Bashir M, MuÈnzker J, Trummer C, Zachhuber V, Leber B et al (2017) Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PLoS One 12(1):e0168390.  https://doi.org/10.1371/journal.pone.0168390CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lloyd-Price J et al (2016) The healthy human microbiome. Genome Med 8:51.  https://doi.org/10.1186/s13073-016-0307-yCrossRefPubMedPubMedCentralGoogle Scholar
  58. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lozupone C, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230.  https://doi.org/10.1038/nature11550CrossRefPubMedPubMedCentralGoogle Scholar
  61. Maclaurin J, Sterelny K (2008) What is biodiversity? University of Chicago Press, ChicagoCrossRefGoogle Scholar
  62. Mason NWH, Pavoine S (2013) Does trait conservatism guarantee that indicators of phylogenetic community structure will reveal niche-based assembly processes along stress gradients? J Veg Sci 24:820–833CrossRefGoogle Scholar
  63. May RM (1990) Taxonomy as destiny. Nature 347:129–130CrossRefGoogle Scholar
  64. Mazel F, Mooers AO, Riva GVD, Pennell MW (2017) Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity. Syst Biol 66(6):1019–1027CrossRefPubMedGoogle Scholar
  65. Mazur A, Lee J, (2016) Sounding the Global Alarm: Environmental Issues in the US National News. Social Studies of Science 23 (4):681-720Google Scholar
  66. Meynard CN, Devictor V, Mouillot D et al (2011) Beyond taxonomic diversity patterns: how do alpha, beta and gamma components of bird functional and phylogenetic diversity respond to environmental gradients across France? Glob Ecol Biogeogr 20:893–903CrossRefGoogle Scholar
  67. Montassier E, Gastinne T, Vangay P, Al-Ghalith GA, Bruley des Varannes S, Massart S, Moreau P, Potel G, de La Cochetiere MF, Batard E, Knights D (2015) Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther 42:515–528CrossRefPubMedGoogle Scholar
  68. Mouillot D, Parravicini V, Bellwood DR, Leprieur F, Huang D, Cowman PF, Albouy C, Hughes TP, Thuiller W, Guilhaumon F (2016) Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat Commun 7:10359CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mouquett N, Devictor V, Meynard CN et al (2012) Ecophylogenetics: advances and perspectives. Biol Rev 87:769–785CrossRefGoogle Scholar
  70. Myers N (1976) An expanded approach to the problem of disappearing species. Science 193:198–202CrossRefPubMedGoogle Scholar
  71. Nehring K, Puppe C (2004) Modelling phylogenetic diversity. Resour Energy Econ 26(2):205–235CrossRefGoogle Scholar
  72. Norse EA, McManus RE (1980) Ecology and living resources biological diversity. In: Environmental quality 1980: the 11th annual report of the Council on Environmental Quality. Council on Environmental Quality, Washington DC, pp 31–80Google Scholar
  73. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, Zech XZ, Van Treuren W, Knight R, Gaffney PM, Spicer P, Lawson P, Marin-Reyes L, Trujillo-Villarroel O, Foster M, Guija-Poma E, Troncoso-Corzo L, Warinner C, Ozga AT, Lewis CM (2015) Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 6:6505.  https://doi.org/10.1038/ncomms7505CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pascual U, Termansen M, Hedlund K, Brussaard L, Faber JH, Foudi S, Lemanceau P, Liv-Jørgensen S (2015) On the value of soil biodiversity and ecosystem services. Ecosyst Serv 15:11–18CrossRefGoogle Scholar
  75. Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86:792–812CrossRefPubMedGoogle Scholar
  76. Pearse WD, Purvis A, Cavender-Bares J, Helmus MR (2014) Metrics and models of community phylogenetics. In: Garamszegi LZ (ed) Modern phylogenetic comparative methods and their application in evolutionary biology. Springer-Verlag GmbH, HeidelbergGoogle Scholar
  77. Pellens R, Grandcolas P (eds) (2016) Biodiversity conservation and phylogenetic systematics preserving our evolutionary heritage in an extinction crisis. Topics in biodiversity and conservation, vol 14. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-22461-9_3CrossRefGoogle Scholar
  78. Petchey OL, Gaston K (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411CrossRefGoogle Scholar
  79. Pio DV et al (2014) Climate change effects on animal and plant phylogenetic diversity in southern Africa. Glob Chang Biol 20:1538–1549CrossRefGoogle Scholar
  80. Pla L, Casanoves F, Di Rienzo J (2012) Quantifying functional biodiversity. SpringerBriefs Environ Sci 38:2191–5547Google Scholar
  81. Podani J (2009) Convex hulls, habitat filtering, and functional diversity: mathematical elegance versus ecological interpretability. Community Ecol 10:244–250CrossRefGoogle Scholar
  82. Pollock LJ, Thuiller W, Jetz W (2017) Large conservation gains possible for global biodiversity facets. Nature 546:141CrossRefPubMedGoogle Scholar
  83. Porter TM, Hajibabaei M (2018) Scaling up: a guide to high-throughput genomic approaches for biodiversity analysis. Mol Ecol 27:313.  https://doi.org/10.1111/mec.14478CrossRefPubMedGoogle Scholar
  84. Pu ZC, Daya P, Tan J, Jiang L (2014) Phylogenetic diversity stabilizes community biomass. J Plant Ecol 7:176–187CrossRefGoogle Scholar
  85. Roush G (1977) Why save diversity? Nat Conservancy News 21:9–12Google Scholar
  86. Scherson RA, Thornhill AH, Urbina-Casanova R, Freyman WA, Pliscoff PA, Mishler BD (2017) Spatial phylogenetics of the vascular flora of Chile. Mol Phylogenet Evol 112:88–95.  https://doi.org/10.1016/j.ympev.2017.04.021CrossRefPubMedGoogle Scholar
  87. Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, Huber DH, Langenheder S, Lennon JT, Martiny JBH, Matulich KL, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:2–19CrossRefGoogle Scholar
  88. Slowinski JB, Crother BI (1998) Is the PTP test useful? Cladistics 14:297–302CrossRefGoogle Scholar
  89. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinction in the gut microbiota compounds over generations. Nature 529(7585):212–215CrossRefPubMedPubMedCentralGoogle Scholar
  90. Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648.  https://doi.org/10.1111/j.1461-0248.2012.01795.xCrossRefPubMedGoogle Scholar
  91. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534.  https://doi.org/10.1038/nature09705CrossRefPubMedGoogle Scholar
  92. Thuiller W, Maiorano L, Mazel F, Guilhaumon F, Ficetola GF, Lavergne S, Renaud J, Roquet C, Mouillot D (2015) Conserving the functional and phylogenetic trees of life of European tetrapods. Philos Trans R Soc Lond B 370:20140005CrossRefGoogle Scholar
  93. Tucker CM et al (2016) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715.  https://doi.org/10.1111/brv.12252CrossRefPubMedGoogle Scholar
  94. Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254CrossRefGoogle Scholar
  95. Vellend M, Cornwell WK, Magnuson-Ford K, Mooers AØ (2010) Measuring phylogenetic biodiversity. In: McGill AEMBJ (ed) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 193–206Google Scholar
  96. Veron S et al (2016) Loss and conservation of evolutionary history in the Mediterranean Basin. BMC Ecol 16:43CrossRefPubMedPubMedCentralGoogle Scholar
  97. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7:13537.  https://doi.org/10.1038/s41598-017-13601-yCrossRefPubMedPubMedCentralGoogle Scholar
  98. Jetz W, Thomas GH, Joy JB, David W. Redding, Hartmann K, Mooers AO, (2014) Global Distribution and Conservation of Evolutionary Distinctness in Birds. Current Biology 24 (9):919–930Google Scholar
  99. WCC (2012) World Conservation Congress, Jeju, Republic of Korea, September 2012. http://2012congress.iucn.org/index.html
  100. Weitzman ML (1992) On diversity. Q. J. Econ. 107:363–405Google Scholar
  101. Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155.  https://doi.org/10.1086/303378CrossRefPubMedGoogle Scholar
  102. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150448CrossRefGoogle Scholar
  103. Wilkinson M, Peres-Neto PR, Foster PG, Moncrieff CB (2002) Type 1 error rates of the parsimony permutation tail probability test. Syst Biol 51(3):524–527CrossRefPubMedGoogle Scholar
  104. Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204  https://doi.org/10.1016/j.tree.2012.10.015CrossRefPubMedGoogle Scholar
  105. Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z (2017) Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol 8:942.  https://doi.org/10.3389/fimmu.2017.00942CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Australian Museum Research InstituteSydneyAustralia

Personalised recommendations