Advertisement

Case Studies

  • Sandra PersianiEmail author
Chapter

Abstract

The following part aims to deepen some of the aspects discussed in the previous chapters by analyzing fifteen systems in nature and their specific characters of motion. These case studies combine the previously discussed parameters with smart design, and have been chosen from three main categories of systems with rising complexity in the control of the movements: plants, invertebrates and vertebrates.

References

  1. Ahmad H, Sehgal S, Mishra A, Gupta R (2012) Mimosa pudica L. (Laajvanti): an overview. Pharmacog Rev 6(12):115–124.  https://doi.org/10.4103/0973-7847.99945
  2. Alexander RMcN (1966) Rubber-like properties of the inner hinge-ligament of pectinidae. J Exp Biol 44(1):119–130Google Scholar
  3. Allen RD (1969) Mechanism of the seismonastic reaction in mimosa pudica. Plant Physiol 44(8):1101–1107.  https://doi.org/10.1104/pp.44.8.1101CrossRefGoogle Scholar
  4. Amador-Vargas S, Dominguez M, Leon G, Maldonado B, Murillo J, Vides GL (2014) Leaf-folding response of a sensitive plant shows context-dependent behavioral plasticity. Plant Ecol 215(12):1445–1454. Springer,  https://doi.org/10.1007/s11258-014-0401-4CrossRefGoogle Scholar
  5. ARKive (2016) Himalayan balsam (Impatiens glandulifera). Accessed 20 April 2016 from http://www.arkive.org/himalayan-balsam/impatiens-glandulifera/
  6. Balmer RT, Franks JG (1975) Contractile characteristics of Mimosa pudica L. Plant Physiol 56(4):464–467CrossRefGoogle Scholar
  7. Biewener AA (2007) Animal locomotion. Oxford University Press, Oxford, UK. ISBN 978-0-19-850022-3Google Scholar
  8. Brackenbury J (1999) Fast locomotion in caterpillars. J Insect Phisiol 45(6):525-533.  https://doi.org/10.1016/s0022-1910(98)00157-7CrossRefGoogle Scholar
  9. Britannica (2016a) Fern, fern spore. Accessed on 26 March 2016 from http://www.britannica.com/plant/fern/Ecology#toc49915
  10. Britannica (2016b) Echinoderm. Accessed on 18 April 2016 from http://www.britannica.com/animal/echinoderm
  11. Britannica (2016c) Locomotion. Accessed on 18 April 2016 from http://www.britannica.com/topic/locomotion/Bottom-locomotion
  12. Brodsky AK (1994) The evolution of insect flight. Oxford University Press, Oxford, UK. ISBN 0-19-854681-5Google Scholar
  13. Burton R (ed) (2002) International wildlife encyclopedia, 3rd ed., vol 4. Marshall Cavendish Corporation, pp 466–467Google Scholar
  14. CABI (2016) Impatiens glandulifera (Himalayan balsam). In: Invasive species compendium. CAB International, Wallingford, UK. Accessed 20 April 2016 from http://www.cabi.org/isc/datasheet/28766
  15. Casey TM (1991) Energetics of caterpillar locomotion: biomechanical constraints of a hydraulic skeleton. Science 252(5002):112–114.  https://doi.org/10.1126/science.252.5002.112CrossRefGoogle Scholar
  16. Chapman DS, Gray A (2012) Complex interactions between the wind and ballistic seed dispersal in Impatiens glandulifera (Royle). J Ecol 100(4):874–883.  https://doi.org/10.1111/j.1365-2745.2012.01977.xCrossRefGoogle Scholar
  17. Chapman G (1950) Of the movement of worms. J Exp Biol 27(1):29–39Google Scholar
  18. Clements DR, Feenstra KR, Jones K, Staniforth R (2008) The biology of invasive plants in Canada 9. Impatiens glandulifera Royle. Can J Plant Sci 88(2):403–417.  https://doi.org/10.4141/CJPS06040CrossRefGoogle Scholar
  19. Columbia Encyclopedia (2016) Echinodermata. Accessed 18 April 2016 from http://www.encyclopedia.com/reference/encyclopedias-almanacs-transcripts-and-maps/echinodermata
  20. Darwin C (1888) Insectivorous plants, 2d edn. Revised by Francis Darwin, John Murray, LondonCrossRefGoogle Scholar
  21. Day MH (ed) (1981) Vertebrate locomotion, symposia of the Zoological Society of London no. 48. The Zoological Society of London, Academic Press Inc., Oxford, LondonGoogle Scholar
  22. Deegan RD (2012) Finessing the fracture energy barrier in ballistic seed dispersal. Proc Natl Acad Sci USA (PNAS) 109(14):5166–5169.  https://doi.org/10.1073/pnas.1119737109CrossRefGoogle Scholar
  23. Del Campo L, Whitaker DL (2008) The biomechanics of ballistochory in impatiens pallida. Pomona Senior Theses, Paper, p 26Google Scholar
  24. De Luccia TPB (2012) Mimosa pudica, Dionaea muscipula and anesthetics. Landes Biosci Plant Signal Behav 7(9):1163–1167.  https://doi.org/10.4161/psb.21000CrossRefGoogle Scholar
  25. De Luccia TPB, Friedman P (2011) Boolean function applied to Mimosa pudica movements. Landes Biosci Plant Signal Behav 6(9):1361–1364.  https://doi.org/10.4161/psb.6.9.16445CrossRefGoogle Scholar
  26. Denny M, Miller L (2006) Jet propulsion in the cold: mechanics of swimming in the Antarctic scallop Adamussium colbecki. J Exp Biol 209:4503–4514.  https://doi.org/10.1242/jeb.02538CrossRefGoogle Scholar
  27. Deora T, Singh AK, Sane SP (2015) Biomechanical basis of wing and haltere coordination in flies. Proc Natl Acad Sci USA (PNAS) 112(5):1481–1486.  https://doi.org/10.1073/pnas.1412279112CrossRefGoogle Scholar
  28. Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960.  https://doi.org/10.1126/science.284.5422.1954CrossRefGoogle Scholar
  29. Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106.  https://doi.org/10.1126/science.288.5463.100CrossRefGoogle Scholar
  30. Eastham LES, Eassa YEE (1955) The feeding mechanism of the butterfly Pieris brassicae L. Philos Trans Roy Soc B, Biol Sci 239(659):1–43.  https://doi.org/10.1098/rstb.1955.0005CrossRefGoogle Scholar
  31. Evans MEG (1972) The jump of the click beetle (Coleo ptera: Elateridae)—a preliminary study. J Zool 167(3):319–336.  https://doi.org/10.1111/j.1469-7998.1972.tb03115.xCrossRefGoogle Scholar
  32. Evans MEG (2010) The jump of the click beetle (Coleoptera, Elateridae)—energetics and mechanics. J Zool 169(2):181–194.  https://doi.org/10.1111/j.1469-7998.1973.tb04553.xCrossRefGoogle Scholar
  33. Fernandes J, Bate M, Vijayraghavan K (1991) Development of the indirect flight muscles of Drosophila. Development 113(1):67–77Google Scholar
  34. Gray J, Lissmann HW (1938) Studies in animal locomotion, VII. Locomotory reflexes in the earthworm. J Exp Biol 15(4):506–517Google Scholar
  35. Guo ZV, Mahadevan L (2008) Limbless undulatory propulsion on land. Proc Natl Acad Sci USA (PNAS) 105(9):3179–3184.  https://doi.org/10.1073/pnas.0705442105CrossRefGoogle Scholar
  36. Hsiao TC, O’Toole JC, Yambao EB, Turner NC (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiol 75:338–341.  https://doi.org/10.1104/pp.75.2.338CrossRefGoogle Scholar
  37. Hutchens JJ, Luken JO (2009) Prey capture in the venus flytrap: collection or selection? Botany 87:1007–1010.  https://doi.org/10.1139/B09-064CrossRefGoogle Scholar
  38. Jaffe MJ (1973) The role of ATP in mechanically stimulated rapid closure of the venuss-flytrap. Plant Physiol 51(1):17–18CrossRefGoogle Scholar
  39. Kaihara S, Takimoto A (1981) Effect of light and temperature on flower opening in Pharbitis nil. Plant Cell Physiol 22(2):215–221.  https://doi.org/10.1093/oxfordjournals.pcp.a076158CrossRefGoogle Scholar
  40. Kier WR (2012) The diversity of hydrostatic skeletons. J Exp Biol 215(8):1247–1257.  https://doi.org/10.1242/jeb.056549CrossRefGoogle Scholar
  41. Knight K (2014) Butterflies manipulate proboscis to suck. J Exp Biol 217(12):2031.  https://doi.org/10.1242/jeb.108803CrossRefGoogle Scholar
  42. Krenn HW (1990) Functional morphology and movements of the proboscis of Lepidoptera (Insecta). Zoomorphology 110(2):105–114.  https://doi.org/10.1007/BF01632816CrossRefGoogle Scholar
  43. Krenn HW, Mühlberger N (2002) Groundplan anatomy of the proboscis of butterflies (Papilionoidea, Lepidoptera). Zoologischer Anzeiger—A J Compar Zool 241(4):369–380.  https://doi.org/10.1078/0044-5231-00078CrossRefGoogle Scholar
  44. Kornev KG, Monaenkova D, Yore C, Klipowics C, Edmond K, Sa V, Andrukh T (2009) Butterfly proboscis as a biomicrofluidic system. American Physical Society, 62nd Annual Meeting of the APS Division of Fluid DynamicsGoogle Scholar
  45. Lehmann FO, Pick S (2007) The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings. J Exp Biol 210:1362–1377.  https://doi.org/10.1242/jeb.02746CrossRefGoogle Scholar
  46. Lehnert MS, Monaenkova D, Andrukh T, Beard CE, Adler PH, Kornev KG (2013) Hydrophobic–hydrophilic dichotomy of the butterfly proboscis. J Roy Soc Interf 10(85):20130336.  https://doi.org/10.1098/rsif.2013.0336CrossRefGoogle Scholar
  47. Lin HT, Slate DJ, Paetsch CR, Dorfmann AL, Trimmer BA (2011) Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton. J Exp Biol 214(7):1194–1204.  https://doi.org/10.1242/jeb.051029CrossRefGoogle Scholar
  48. Lissmann HW (1950) Rectilinear locomotion in a snake (Boa Occidentalis). J Exp Biol 26(4):368–379Google Scholar
  49. Llorens C, Argentina M, Rojas N, Westbrook J, Dumais J, Noblin X (2015) The fern cavitation catapult: mechanism and design principles. J Roy Soc Interf 13.  https://doi.org/10.1098/rsif.2015.0930CrossRefGoogle Scholar
  50. Marmottant P, Ponomarenko A, Bienaimé D (2013) The walk and jump of Equisteum spores. In: Proceedings of the Royal Society B, 280, pp. 20131465.  https://doi.org/10.1098/rspb.2013.1465
  51. Marvi H, Hu DL (2012) Friction enhancement in concertina locomotion of snakes. J R Soc Interface 9:3067–3080.  https://doi.org/10.1098/rsif.2012.0132CrossRefGoogle Scholar
  52. Marvi H, Bridges J, Hu DL (2013) Snakes mimic earthworms: propulsion using rectilinear travelling waves. J Roy Soc Interf 10(84).  https://doi.org/10.1098/rsif.2013.0188CrossRefGoogle Scholar
  53. McCurley RS, Kier WM (1995) The functional morphology of starfish tube feet: the role of a crossed-fiber helical array in movement. Biol Bull 188(2):197–209.  https://doi.org/10.2307/1542085CrossRefGoogle Scholar
  54. Mezoff S, Papastathis N, Takesian A, Trimmer BA (2004) The biomechanical and neural control of hydrostatic limb movements in Manduca sexta. J Exp Biol 207(17):3043–3053.  https://doi.org/10.1242/jeb.01136CrossRefGoogle Scholar
  55. Monaenkova D, Lehnert MS, Andrukh T, Beard CE, Rubin B, Tokarev A, Lee WK, Adler PH, Kornev KG (2011) Butterfly proboscis: combining a drinking straw with a nanosponge facilitated diversification of feeding habits. J Roy Soc Interf 9(69).  https://doi.org/10.10898/rsif.2011.0392CrossRefGoogle Scholar
  56. Moon B (2010) Snake locomotion. University of Louisiana at Lafayette. Accessed 25 April 2016 from http://www.ucs.louisiana.edu/~brm2286/locomotn.htm
  57. Nachtigall W (2005) Biologisches Design, Systematischer Katalog für bionisches Gestalten. Springer Verlag, Berlin. ISBN 978-3-540-27369-1Google Scholar
  58. Newcombe F (1888) Spore-dissemination of equisetum. Bot Gaz 13(7):173–178.  https://doi.org/10.1086/326297CrossRefGoogle Scholar
  59. Noblin X, Rojas NO, Westbrook J, Llorens C, Argentina M, Dumais J (2012) The fern sporangium: a unique catapult. Science 335(6074):1322.  https://doi.org/10.1126/science.1215985CrossRefGoogle Scholar
  60. Pandolfi C, Masi E, Voigt B, Mugnai S, Volkmann D, Mancuso S (2014) Gravity affects the closure of the traps in Dionaea muscipula. BioMed Research International 2014, Hindawi Publishing Corporation.  https://doi.org/10.1155/2014/964203CrossRefGoogle Scholar
  61. Phillips HL, Kende H (1980) Structural changes in flowers of Ipomoea tricolor during flower opening and closing. Protoplasma 102(3–4):199-215. Springer Verlag,  https://doi.org/10.1007/bf01279588CrossRefGoogle Scholar
  62. Pritchard J (2001) Turgor pressure. Encyclopedia of life sciences. Nature Publishing Group, DOI.  https://doi.org/10.1038/npg.els.0001687CrossRefGoogle Scholar
  63. Pritts MB, Rahn CD (2004) Design of an artificial muscle continuum robot. In: Proceedings of the IEEE international conference of robotics and automation, Piscataway, NJ, vol 5, pp 4742–4746.  https://doi.org/10.1109/robot.2004.1302467
  64. Quillin KJ (1999) Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J Exp Biol 202(6):661–674Google Scholar
  65. Quillin KJ (2000) Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris. J Exp Biol 203(18):2757–2770Google Scholar
  66. Ribak G, Weihs D (2011) Jumping without using legs: the jump of the click-beetles (Elateridae) Is morphologically constrained. PLoS ONE 6(6):e20871.  https://doi.org/10.1371/journal.pone.0020871CrossRefGoogle Scholar
  67. Ritter A (2007) Smart materials in architecture, interior architecture and design. Birkhäuser, Basel. ISBN 13: 978-3-7643-7327-6Google Scholar
  68. Rost TL (1997). Rice anatomy. Virtual Crops Anatomy Atlas, UC Davies University of California, Department of Plant Biology. Accessed on 26 March 2016 from http://www-plb.ucdavis.edu/labs/rost/rice/ricehome.html
  69. Routier-Kierzkowska AL, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C, Smith RS (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522.  https://doi.org/10.1104/pp.111.191460CrossRefGoogle Scholar
  70. Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206(23):4191–4208.  https://doi.org/10.1242/jeb.00663CrossRefGoogle Scholar
  71. Schleicher S, Lienhard J, Poppinga S, Speck T, Knippers J (2010) Abstraction of bio-inspired curved-line folding patterns for elastic foils and membranes in architecture. Design and nature V, WIT Press, pp 479–489.  https://doi.org/10.2495/dn100431
  72. Seymour MK (1969) Locomotion and coelomic pressure in Lumbricus terrestris L. J Exp Biol 51(1):47–58MathSciNetGoogle Scholar
  73. Tremblay I, Guderley HE, Himmelman JH (2012) Swimming away or clamming up: the use of phasic and tonic adductor muscles during escape responses varies with shell morphology in scallops. J Exp Biol 215(23):4131–4143.  https://doi.org/10.1242/jeb.075986CrossRefGoogle Scholar
  74. Trueman ER (1967) The dynamics of burrowing in Ensis (Bivalvia). Proc Roy Soc London B 166(1005):459–476.  https://doi.org/10.1098/rspb.1967.0007CrossRefGoogle Scholar
  75. Tsai CC, Monaenkova D, Beard CE, Adler PH, Kornev KG (2014) Paradox of the drinking-straw model of the butterfly proboscis. J Exp Biolo 217:2130–2138.  https://doi.org/10.1242/jeb.097998CrossRefGoogle Scholar
  76. Uehara K, Kurita S (1989) An ultrastructural study of spore wall morphogenesis in equisetum arvense. Am J Bot 76(7):939–951.  https://doi.org/10.2307/2444515CrossRefGoogle Scholar
  77. van Doorn WG, van Meeteren U (2003) Flower opening and closure: a review. J Exp Bot 54(389):1801–1812.  https://doi.org/10.1093/jxb/erg213CrossRefGoogle Scholar
  78. van Griethuijsen LI, Trimmer BA (2009) Kinematics of horizontal and vertical caterpillar crawling. J Exp Biol 212(10):1455–1462.  https://doi.org/10.1242/jeb.025783CrossRefGoogle Scholar
  79. Volkov AG, Adesina T, Markin VS, Jovanov E (2008) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146(2):694–702.  https://doi.org/10.1104/pp.107.108241CrossRefGoogle Scholar
  80. Volkov AG, Foster JC, Baker KD, Markin VS (2010) Mechanical and electrical anisotropy in Mimosa pudica pulvini, Landes Bioscience. Plant Signal Behav 5(10):1211–1221.  https://doi.org/10.4161/psb.5.10.12658CrossRefGoogle Scholar
  81. Xiang JJ, Zhang GH, Qian Q, Xue HW (2012) Semi-rolled leaf 1 Encodes a Putative Glycosylphosphatidylinositol-Anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol 159:1488–1500.  https://doi.org/10.1104/pp.112.199968CrossRefGoogle Scholar
  82. Yang R, Lenaghan SC, Zhang M, Xia L (2010) A mathematical model on the closing and opening mechanism for Venus flytrap, Landes Bioscience. Plant Signal Behav 5(8):968–978.  https://doi.org/10.4161/psb.5.8.12136CrossRefGoogle Scholar
  83. Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325(5947):1549–1552.  https://doi.org/10.1126/science.1175928CrossRefGoogle Scholar
  84. Zou L, Sun X, Zhang Z, Liu P, Wu J, Tian C, Qiu J, Lu T (2011) Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol 156:1589–1602CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of ArchitectureTechnical University of MunichMunichGermany

Personalised recommendations