Advertisement

Green Neighbourhoods: The Role of Big Data in Low Voltage Networks’ Planning

Chapter
Part of the Studies in Big Data book series (SBD, volume 42)

Abstract

In this chapter, we aim to illustrate the benefits of data collection and analysis to the maintenance and planning of current and future low voltage networks. To start with, we present several recently developed methods based on graph theory and agent-based modelling for analysis and short- and long-term prediction of individual households electric energy demand. We show how maximum weighted perfect matching in bipartite graphs can be used for short-term forecasts, and then review recent research developments of this method that allow applications on very large datasets. Based on known individual profiles, we then review agent-based modelling techniques for uptake of low carbon technologies taking into account socio-demographic characteristics of local neighbourhoods. While these techniques are relatively easily scalable, measuring the uncertainty of their results is more challenging. We present confidence bounds that allow us to measure uncertainty of the uptake based on different scenarios. Finally, two case-studies are reported, describing applications of these techniques to energy modelling on a real low-voltage network in Bracknell, UK. These studies show how applying agent-based modelling to large collected datasets can create added value through more efficient energy usage. Big data analytics of supply and demand can contribute to a better use of renewable sources resulting in more reliable, cheaper energy and cut our carbon emissions at the same time.

Notes

Acknowledgements

This work was supported by Scottish and Southern Electricity Networks through the New Thames Valley Vision Project (SSET203 New Thames Valley Vision), and funded by the Low Carbon Network Fund established by Ofgem.

References

  1. 1.
    S. Arora, J. Taylor, Forecasting electricity smart meter data using conditional kernel density estimation. Omega 59, 47–59 (2016)CrossRefGoogle Scholar
  2. 2.
    F. Bass, New product growth for model consumer durables. Manage. Sci. 15(5), 215–227 (1969)CrossRefGoogle Scholar
  3. 3.
    M. Brabec , O. Rej Konár, E. Pelikán, M. Malý, A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers. Int. J. Forecasting 24(4), 659–678 (2008).  https://doi.org/10.1016/j.ijforecast.2008.08.005. http://www.sciencedirect.com/science/article/pii/S0169207008000976. Energy ForecastingCrossRefGoogle Scholar
  4. 4.
    M.A. Brown, Enhancing efficiency and renewables with smart grid technologies and policies. Futures 58(Supplement C), 21–33 (2014).  https://doi.org/10.1016/j.futures.2014.01.001. http://www.sciencedirect.com/science/article/pii/S0016328714000020. SI: Low Carbon FuturesCrossRefGoogle Scholar
  5. 5.
    N. Charlton, D. Vukadinovic Greetham, C. Singleton, Graph-based algorithms for comparison and prediction of household-level energy use profiles, in 2013 IEEE International Workshop on Inteligent Energy Systems (IWIES), 119–124 2013.  https://doi.org/10.1109/IWIES.2013.6698572
  6. 6.
    R. Chatterjee, J. Eliashberg, The innovation diffusion process in a heterogeneous population: A micromodeling approach. Manage. Sci. 36(9), 1057–1079 (1990)CrossRefGoogle Scholar
  7. 7.
    Commission for Energy Regulation (CER): Smart metering electricity customer behaviour trials (2007). http://www.ucd.ie/issda/data/commissionforenergyregulation/ [online], data available from Irish Social Science Data Archive
  8. 8.
    R.E. Edwards, J. New, L.E. Parker, Predicting future hourly residential electrical consumption: a machine learning case study. Energy and Buildings 49, 591–603 (2012).  https://doi.org/10.1016/j.enbuild.2012.03.010. http://www.sciencedirect.com/science/article/pii/S0378778812001582CrossRefGoogle Scholar
  9. 9.
    K. Gajowniczek, T. abkowski, Electricity forecasting on the individual household level enhanced based on activity patterns. PLOS ONE 12(4), 1–26 (2017).  https://doi.org/10.1371/journal.pone.0174098CrossRefGoogle Scholar
  10. 10.
    M. Gordon, M. aguna, S. oncalves, J. glesias, Adoption of innovations with contrarian agents and repentance. Phys.A: Stat. Mech. Appl. 486(Supplement C), 192–205 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Haben, C. Singleton, P. Grindrod, Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Trans. Smart Grid 7(1), 136–144 (2016). http://centaur.reading.ac.uk/47589/CrossRefGoogle Scholar
  12. 12.
    S. Haben, J. Ward, D.V. Greetham, C. Singleton, P. Grindrod, A new error measure for forecasts of household-level, high resolution electrical energy consumption. Int. J. Forecasting 30(2), 246–256 (2014).  https://doi.org/10.1016/j.ijforecast.2013.08.002. http://www.sciencedirect.com/science/article/pii/S0169207013001386CrossRefGoogle Scholar
  13. 13.
    P. Hanser, R. Lueken, W. Gorman, J. Mashal, The practicality of distributed PV-battery systems to reduce household grid reliance. Utilities Policy (in press), – (2017).  https://doi.org/10.1016/j.jup.2017.03.004. http://www.sciencedirect.com/science/article/pii/S0957178715300758
  14. 14.
    T. Hargreaves, M. Nye, J. Burgess, Keeping energy visible? exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy 52(Supplement C), 126–134 (2013).  https://doi.org/10.1016/j.enpol.2012.03.027. http://www.sciencedirect.com/science/article/pii/S0301421512002327. Special Section: Transition Pathways to a Low Carbon EconomyCrossRefGoogle Scholar
  15. 15.
    L. Hattam, D.V. Greetham, Green neighbourhoods in low voltage networks: measuring impact of electric vehicles and photovoltaics on load profiles. J. Mod. Power Sys. Clean Energy 5(1), 105–116 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Hattam, D.V. Greetham, An innovation diffusion model of a local electricity network that is influenced by internal and external factors. Phys. A: Stat. Mech. Appl. 490(Supplement C), 353–365 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    L. Hattam, D.V. Greetham, S. Haben, D. Roberts, Electric vehicles and low voltage grid: impact of uncontrolled demand side response in 24th International Conference and Exhibition on Electricity Distribution (CIRED), In press, 2017Google Scholar
  18. 18.
    K. Haynes, V. Mahajan, G. White, Innovation diffusion: a deterministic model of space-time integration with physical analog. Socio-Econ. Plann. Sci. 11(1), 25–29 (1977)CrossRefGoogle Scholar
  19. 19.
    HM Government: Smart meter roll-out (GB): cost-benefit analysis (Nov 2016). https://www.gov.uk/government/publications/smart-meter-roll-out-gb-cost-benefit-analysis. [online], Accessed 20 April 2017
  20. 20.
    J. Hogg, J. Scott, On the use of suboptimal matchings for scaling and ordering sparse symmetric matrices. Numer. Linear. Algebra. Appl. 22(4), 648–663 (2015).  https://doi.org/10.1002/nla.1978. Nla.1978MathSciNetCrossRefGoogle Scholar
  21. 21.
    T. Hong, S. Fan, Probabilistic electric load forecasting: a tutorial review. Int. J. Forecasting 32(3), 914–938 (2016).  https://doi.org/10.1016/j.ijforecast.2015.11.011. http://www.sciencedirect.com/science/article/pii/S0169207015001508CrossRefGoogle Scholar
  22. 22.
    J. de Hoog, V. Muenzel, D.C. Jayasuriya, T. Alpcan, M. Brazil, D.A. Thomas, I. Mareels, G. Dahlenburg, R. Jegatheesan, The importance of spatial distribution when analysing the impact of electric vehicles on voltage stability in distribution networks. Energy. Sys. 6(1), 63–84 (2015).  https://doi.org/10.1007/s12667-014-0122-8
  23. 23.
    R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy. Int. J. Forecasting 22(4), 679–688 (2006).  https://doi.org/10.1016/j.ijforecast.2006.03.001. http://www.sciencedirect.com/science/article/pii/S0169207006000239CrossRefGoogle Scholar
  24. 24.
    E. Karakaya, Finite Element Method for forecasting the diffusion of photovoltaic systems: Why and how? Appl. Energy 163, 464–475 (2016)CrossRefGoogle Scholar
  25. 25.
    E. Kiesling, M. Günther, C. Stummer, L. Wakolbinger, Agent-based simulation of innovation diffusion: a review. Central Eur. J. Oper. Res. 20(2), 183–230 (2012)CrossRefGoogle Scholar
  26. 26.
    R. McKenna, L. Hofmann, E. Merkel, W. Fichtner, N. Strachan, Analysing socioeconomic diversity and scaling effects on residential electricity load profiles in the context of low carbon technology uptake. Energy Policy 97, 13–26 (2016).  https://doi.org/10.1016/j.enpol.2016.06.042. http://www.sciencedirect.com/science/article/pii/S0301421516303469CrossRefGoogle Scholar
  27. 27.
    A. Molderink, V. Bakker, M.G.C. Bosman, J.L. Hurink, G.J.M. Smit, A three-step methodology to improve domestic energy efficiency, in 2010 Innovative Smart Grid Technologies (ISGT), 1–8 2010.  https://doi.org/10.1109/ISGT.2010.5434731
  28. 28.
    R. Morrill, The shape of diffusion in space and time. Econ. Geography 46, 259–268 (1970)CrossRefGoogle Scholar
  29. 29.
    J. Munkres, Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5, 32–38 (1957)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Neaimeh, R. Wardle, A.M. Jenkins, J. Yi, G. Hill, P.F. Lyons, Y. Hbner, P.T. Blythe, P.C. Taylor, A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts. Appl. Energy 157, 688–698 (2015).  https://doi.org/10.1016/j.apenergy.2015.01.144. http://www.sciencedirect.com/science/article/pii/S0306261915001944CrossRefGoogle Scholar
  31. 31.
    Pecan Street Inc: Dataport Pecan street (Nov 2016). http://dataport.pecanstreet.org. [online], accessed 20 April 2017
  32. 32.
    S. Quoilin, K. Kavvadias, A. Mercier, I. Pappone, A. Zucker, Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment. Appl. Energy 182, 58–67 (2016).  https://doi.org/10.1016/j.apenergy.2016.08.077. http://www.sciencedirect.com/science/article/pii/S0306261916311643CrossRefGoogle Scholar
  33. 33.
    E. Rogers, Diffusion of Innovations (The Free Press, New York, 1962)Google Scholar
  34. 34.
    M. Rowe, T. Yunusov, S. Haben, C. Singleton, W. Holderbaum, B. Potter A peak reduction scheduling algorithm for storage devices on the low voltage network. IEEE Trans. Smart Grid 5(4), 2115–2124 (2014).  https://doi.org/10.1109/TSG.2014.2323115CrossRefGoogle Scholar
  35. 35.
    M. Sathe, O. Schenk, H. Burkhart, An auction-based weighted matching implementation on massively parallel architectures. Parallel Comput. 38(12), 595–614 (2012).  https://doi.org/10.1016/j.parco.2012.09.001. http://www.sciencedirect.com/science/article/pii/S0167819112000750MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin Heidelberg, 2002)MATHGoogle Scholar
  37. 37.
    M. Sharifzadeh, H. Lubiano-Walochik, N. Shah, Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies. Renewable Sustainable Energy Rev. 72, 385–398 (2017).  https://doi.org/10.1016/j.rser.2017.01.069. http://www.sciencedirect.com/science/article/pii/S1364032117300795CrossRefGoogle Scholar
  38. 38.
    K. Shinohara, H. Okuda, Dynamic innovation diffusion modelling. Comput. Econom. 35(1), 51 (2009)CrossRefGoogle Scholar
  39. 39.
    R.P. Singh, P.X. Gao, D.J. Lizotte, On hourly home peak load prediction, in 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), 163–168 2012.  https://doi.org/10.1109/SmartGridComm.2012.6485977
  40. 40.
    B.K. Sovacool, P. Kivimaa, S. Hielscher, K. Jenkins, Vulnerability and resistance in the united kingdom’s smart meter transition. Energy Policy 109(Supplement C), 767–781 (2017).  https://doi.org/10.1016/j.enpol.2017.07.037. http://www.sciencedirect.com/science/article/pii/S0301421517304688
  41. 41.
    M. Sugiyama, Climate change mitigation and electrification. Energy Policy 44, 464–468 (2012).  https://doi.org/10.1016/j.enpol.2012.01.028. http://www.sciencedirect.com/science/article/pii/S030142151200033XCrossRefGoogle Scholar
  42. 42.
    C. Sun, F. Sun, S.J. Moura, Nonlinear predictive energy management of residential buildings with photovoltaics and batteries. J. Power Sources 325, 723–731 (2016).  https://doi.org/10.1016/j.jpowsour.2016.06.076. http://www.sciencedirect.com/science/article/pii/S0378775316307789CrossRefGoogle Scholar
  43. 43.
    C. Swinerd, K. McNaught, Design classes for hybrid simulations involving agent-based and system dynamics models. Simul. Modell. Practice Theory 25(Supplement C), 118–133 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Swinerd, K. McNaught, Simulating the diffusion of technological innovation with an integrated hybrid agent-based system dynamics model. J. Simul. 8(3), 231–240 (2014)CrossRefGoogle Scholar
  45. 45.
    J.W. Taylor, A. Espasa, Energy forecasting. Int. J. Forecasting 24, 561–565 (2008)CrossRefGoogle Scholar
  46. 46.
    Taylor, J.W., de Menezes, L.M., McSharry, P.E.: A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecasting 22(1), 1–16 (2006).  https://doi.org/10.1016/j.ijforecast.2005.06.006. http://www.sciencedirect.com/science/article/pii/S0169207005000907CrossRefGoogle Scholar
  47. 47.
    N. Tomizawa, On some techniques useful for solution of transportation network problems. Networks 1, 33–34 (1971)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Tzafestas, S., Tzafestas, E.: Computational intelligence techniques for short-term electric load forecasting. J. Intell. Rob. Sys. 31(1), 7–68 (2001).  https://doi.org/10.1023/A:1012402930055
  49. 49.
    J.D. Watson, N.R. Watson, D. Santos-Martin, A.R. Wood, S. Lemon, A.J.V. Miller, Impact of solar photovoltaics on the low-voltage distribution network in New Zealand. IET Generation, Transmission Distribution 10(1), 1–9 (2016).  https://doi.org/10.1049/iet-gtd.2014.1076CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, Centre for the Mathematics of Human BehaviourUniversity of ReadingReadingUK

Personalised recommendations