Advertisement

Remote Sensing of Water Quality

  • Mathew G. Allan
  • Chris G. McBride
Chapter

Abstract

There is a need for increased monitoring of freshwater resources to effectively manage water quality. Remote sensing has the potential to substantially improve the spatiotemporal resolution of monitoring. Satellites sensors vary in temporal, spatial, radiometric, and spectral resolution. For remote sensing of optically active water constituents, there is no one definitive remote sensing solution for any lake or group of lakes, and the method needs to be tailored to the lake size and optical complexity of the system and the spectral and spatial resolution of the sensor. There are three general categories of sensors for spaceborne remote sensing, including hyperspectral sensors, broadband medium spatial resolution sensors, and narrow band low spatial resolution satellite sensors. The satellite sensor’s spatial resolution will determine the minimum lake size that can be monitored via remote sensing, while the sensor’s spectral resolution will determine the ability of the sensor to differentiate optically active constituents. Algorithms for remote sensing of water constituents can be divided into empirical, semi-analytical, or analytical methods. Empirical methods are applicable where there is a simple relationship between the constituent of interest (e.g., chlorophyll a) and reflectance and are therefore usually limited to lakes where only one water quality constituent dominates reflectance. Semi-analytical algorithms can often be applied in place of empirical algorithms and have a number of advantages. Semi-analytical algorithms can be developed independently of in situ samples, are applicable to multiple satellite sensors, have greater spatiotemporal applicability, and are designed to determine more than one water quality parameter simultaneously. Analytical methods are based on radiative transfer modelling or simplifications thereof.

Keywords

Landsat Sentinel Bio-optical Satellite 

References

  1. Allan MG, Hamilton DP, Hicks BJ, Brabyn L (2011) Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand. Int J Remote Sens 32:2037–2055CrossRefGoogle Scholar
  2. Allan MG, Hamilton DP, Hicks B, Brabyn L (2015) Empirical and semi-analytical chlorophyll a algorithms for multi-temporal monitoring of New Zealand lakes using Landsat. Environ Monit Assess 187:364PubMedCrossRefGoogle Scholar
  3. Aurin DA, Dierssen HM (2012) Advantages and limitations of ocean color remote sensing in CDOM-dominated, mineral-rich coastal and estuarine waters. Remote Sens Environ 125:181–197CrossRefGoogle Scholar
  4. Babin M (2003) Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res 108:3211CrossRefGoogle Scholar
  5. Babin M, Therriault J-C, Legendre L, Condal A (1993) Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production. Limnol Oceanogr 38:154–177CrossRefGoogle Scholar
  6. Bailey SW, Franz BA, Werdell PJ (2010) Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt Express 18:7521PubMedCrossRefGoogle Scholar
  7. Binding CE, Jerome JH, Bukata RP, Booty WG (2010) Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery. Int J Remote Sens 31:5239–5255CrossRefGoogle Scholar
  8. Binding CE, Greenberg TA, Jerome JH, Bukata RP Letourneau G (2011) An assessment of MERIS algal products during an intense bloom in lake of the woods. J Plankton Res 33:793–806CrossRefGoogle Scholar
  9. Blondeau-Patissier D, Brando VE, Oubelkheir K, Dekker AG, Clementson LA, Daniel P (2009) Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia. J Geophys Res 114:C05003CrossRefGoogle Scholar
  10. Brando VE, Dekker AG, Park YJ, Schroeder T (2012) Adaptive semianalytical inversion of ocean color radiometry in optically complex waters. Appl Opt 51:2808PubMedCrossRefGoogle Scholar
  11. Brezonik PL, Olmanson LG, Finlay JC, Bauer ME (2015) Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens Environ 157:199–215CrossRefGoogle Scholar
  12. Bricaud A (2004) Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J Geophys Res 109:C11010CrossRefGoogle Scholar
  13. Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53CrossRefGoogle Scholar
  14. Brivio PA, Giardino C, Zilioli E (1997) The satellite derived optical information for the comparative assessment of lacustrine water quality. Sci Total Environ 196:229–245CrossRefGoogle Scholar
  15. Budd JW, Warrington DS (2004) Satellite-based sediment and chlorophyll a estimates for Lake Superior. J Great Lakes Res 30:459–466CrossRefGoogle Scholar
  16. Bukata RP, Bruton JE, Jerome JH (1985) Application of direct measurements of optical parameters to the estimation of lake water quality indicators. Inland Waters Directorate, Burlington, ON, CanadaGoogle Scholar
  17. Bukata RP, Jerome JH, Kondratyev KY, Pozdnyakov DV (1991) Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga. J Great Lakes Res 17:461–469CrossRefGoogle Scholar
  18. Bukata RP, Jerome JH, Kondratyev KY, Pozdnyakov DV (1995) Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton, FLGoogle Scholar
  19. Bulgarelli B, Kisselev VB, Roberti L (1999) Radiative transfer in the atmosphere-ocean system: the finite-element method. Appl Opt 38:1530–1542PubMedCrossRefGoogle Scholar
  20. Campbell G, Phinn SR, Dekker AG, Brando VE (2011) Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images. Remote Sens Environ 115:2402–2414CrossRefGoogle Scholar
  21. Carder KL, Steward RG, Harvey GR, Ortner PB (1989) Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnol Oceanogr 34:68–81CrossRefGoogle Scholar
  22. Carder KL, Chen FR, Lee ZP, Hawes SK, Kamykowski D (1999) Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J Geophys Res Oceans 104:5403–5421CrossRefGoogle Scholar
  23. Chávez PSJ (1996) Image-based atmospheric corrections – revisited and improved. Photogramm Eng Remote Sens 62:1025–1036Google Scholar
  24. Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Published on behalf of UNESCO, WHO and UNEP by E&FN Spon, LondonGoogle Scholar
  25. Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97CrossRefGoogle Scholar
  26. Davies-Colley RJ, Vant WN, Smith DG (1993) Colour and clarity of natural waters. Ellis Horwood, LondonGoogle Scholar
  27. Dekker AG, Peters SWM (1993) The use of the thematic mapper for the analysis of eutrophic lakes: a case study in the Netherlands. Int J Remote Sens 14:799–821CrossRefGoogle Scholar
  28. Dekker AG, Hoogenboom HJ, Goddijn LM, Malthus TJM (1997) The relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sens Rev 15:59–74CrossRefGoogle Scholar
  29. Dekker AG, Vos RJ, Peters SW (2001) Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the Southern Frisian lakes. Sci Total Environ 268:197–214PubMedCrossRefGoogle Scholar
  30. Dekker AG, Brando VE, Anstee JM, Pinnel M, Kutser T, Hoogenboom EJ, Peters S, Pasterkamp R, Vos R, Olbert C, Malthus TJM (2002a) Imaging spectrometry of water. In: van der Meer FD, de Jong SM (eds) Imaging spectrometry: basic principles and prospective applications. Springer, Dordrecht, pp 307–359CrossRefGoogle Scholar
  31. Dekker AG, Vos RJ, Peters SWM (2002b) Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int J Remote Sens 23:15–35CrossRefGoogle Scholar
  32. Devred E, Sathyendranath S, Stuart V, Platt T (2011) A three component classification of phytoplankton absorption spectra: application to ocean-color data. Remote Sens Environ 115:2255–2266CrossRefGoogle Scholar
  33. Doerffer R, Schiller H (2007) The MERIS Case 2 water algorithm. Int J Remote Sens 28:517–535CrossRefGoogle Scholar
  34. Dubelaar GB, Visser JW, Donze M (1987) Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles. Cytometry 8:405–412PubMedCrossRefGoogle Scholar
  35. Fell F, Fischer J (2001) Numerical simulation of the light field in the atmosphere–ocean system using the matrix-operator method. J Quant Spectrosc Radiat Transf 69:351–388CrossRefGoogle Scholar
  36. Fichot CG, Downing BD, Bergamaschi BA, Windham-Myers L, Marvin-DiPasquale M, Thompson DR, Gierach MM (2016) High-resolution remote sensing of water quality in the San Francisco Bay–Delta Estuary. Environ Sci Technol 50:573–583PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fischer J, Grassl H (1984) Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix-operator approach. Appl Opt 23:1032PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gallegos CL, Davies-Colley RJ, Gall M (2008) Optical closure in lakes with contrasting extremes of reflectance. Limnol Oceanogr 53:2021–2034CrossRefGoogle Scholar
  39. Giardino C, Pepe M, Brivio PA, Ghezzi P, Zilioli E (2001) Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Sci Total Environ 268:19–29PubMedCrossRefPubMedCentralGoogle Scholar
  40. Giardino C, Brando VE, Dekker AG, Strömbeck N, Candiani G (2007) Assessment of water quality in Lake Garda (Italy) using hyperion. Remote Sens Environ 109:183–195CrossRefGoogle Scholar
  41. Gitelson AA, Yacobi YZ, Karnieli A, Kress N (1995) Remote estimation of chlorophyll concentration in polluted marine waters in Haifa Bay, Southeastern Mediterranean. In: Proceedings of SPIE 2503, 21 September 1995, Air Toxics and Water Monitoring, pp 44–54Google Scholar
  42. Gitelson A, Dallolmo G, Moses W, Rundquist DC, Barrow T, Fisher TR, Gurlin D, Holz J (2008) A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sens Environ 112:3582–3593CrossRefGoogle Scholar
  43. Gons HJ, Auer MT, Effler SW (2008) MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens Environ 112:4098–4106CrossRefGoogle Scholar
  44. Gordon HR, Brown OB (1973) Irradiance reflectivity of a flat ocean as a function of its optical properties. Appl Opt 12:1549–1551PubMedCrossRefGoogle Scholar
  45. Gordon HR, Morel A (1983) Remote assessment of ocean color for interpretation of satellite visible imagery: a review. Springer, New YorkCrossRefGoogle Scholar
  46. Gordon HR, Brown JW, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS, Clark DK (1988) A semianalytic radiance model of ocean color. J Geophys Res 93:10909–10924CrossRefGoogle Scholar
  47. Goyens C, Jamet C, Schroeder T (2013) Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters. Remote Sens Environ 131:63–75CrossRefGoogle Scholar
  48. Guanter L, Ruiz-Verdú A, Odermatt D, Giardino C, Simis S, Estelles V, Heege T, Dominguez-Gomez J-A, Moreno J (2010) Atmospheric correction of ENVISAT/MERIS data over inland waters: validation for European lakes. Remote Sens Environ 114:467–480CrossRefGoogle Scholar
  49. Gurlin D, Gitelson AA, Moses WJ (2011) Remote estimation of chl-a concentration in turbid productive waters – return to a simple two-band NIR-red model? Remote Sens Environ 115:3479–3490CrossRefGoogle Scholar
  50. Han LH (1997) Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters. Photogramm Eng Remote Sens 63:701–705Google Scholar
  51. Heege T, Fischer J (2004) Mapping of water constituents in Lake Constance using multispectral airborne scanner data and a physically based processing scheme. Can J Remote Sens 30:77–86CrossRefGoogle Scholar
  52. Heim B (2005) Qualitative and quantitative analyses of Lake Baikal’s surface-waters using ocean colour satellite data (SeaWiFS). Ph.D. Thesis, University of Potsdam, GermanyGoogle Scholar
  53. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969CrossRefGoogle Scholar
  54. Horion S, Bergamino N, Stenuite S, Descy JP, Plisnier PD, Loiselle SA, Cornet Y (2010) Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sens Environ 114:781–791CrossRefGoogle Scholar
  55. Hunter PD, Tyler AN, Carvalho L, Codd GA, Maberly SC (2010) Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens Environ 114:2705–2718CrossRefGoogle Scholar
  56. Kallio K (2012) Water quality estimation by optical remote sensing in boreal lakes. Ph.D. Thesis, University of Helsinki, FinlandGoogle Scholar
  57. Kirk JTO (1981) Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters. Mar Freshw Res 32:517–532CrossRefGoogle Scholar
  58. Kirk JTO (2010) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  59. Kisselev VB, Roberti L, Perona G (1995) Finite-element algorithm for radiative transfer in vertically inhomogeneous media: numerical scheme and applications. Appl Opt 34:8460PubMedCrossRefGoogle Scholar
  60. Kloiber SM, Brezonik PL, Olmanson LG, Bauer ME (2002) A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens Environ 82:38–47CrossRefGoogle Scholar
  61. Koponen S, Kallio K, Pulliainen J, Vepsalainen J, Pyhalahti T, Hallikainen M (2004) Water quality classification of lakes using 250-m MODIS data. IEEE Geosci Remote Sens Lett 1:287–291CrossRefGoogle Scholar
  62. Kostadinov TS, Siegel DA, Maritorena S (2010) Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosci Discuss 7:4295–4340CrossRefGoogle Scholar
  63. Kotchenova SY, Vermote EF, Levy R, Lyapustin A (2008) Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Appl Opt 47:2215–2226PubMedCrossRefGoogle Scholar
  64. Lee Z, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41:5755PubMedCrossRefGoogle Scholar
  65. Lesht BM, Barbiero RP, Warren GJ (2012) Satellite ocean color algorithms: a review of applications to the Great Lakes. J Great Lakes Res 38:49–60CrossRefGoogle Scholar
  66. Li H, Budd JW, Green S (2004) Evaluation and regional optimization of bio-optical algorithms for central Lake Superior. J Great Lakes Res 30:443–458CrossRefGoogle Scholar
  67. Li L, Li L, Shi K, Li Z, Song K (2012) A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Sci Total Environ 435–436:141–150PubMedCrossRefPubMedCentralGoogle Scholar
  68. Li L, Li L, Song K, Li Z (2013) An inversion model for deriving inherent optical properties of inland waters: establishment, validation and application. Remote Sens Environ 135:150–166CrossRefGoogle Scholar
  69. Li L, Li L, Song K (2015) Remote sensing of freshwater cyanobacteria: an extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin. Remote Sens Environ 157:9–23CrossRefGoogle Scholar
  70. Lillesand TM, Johnson WL, Deuell RL, Lindstrom OM, Meisner DE (1983) Use of Landsat data to predict the trophic state of Minnesota lakes. Photogramm Eng Remote Sens 49:219–229Google Scholar
  71. Lobo FL, Costa MPF, Novo EMLM (2015) Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens Environ 157:170–184CrossRefGoogle Scholar
  72. Lymburner L, Botha E, Hestir E, Anstee J, Sagar S, Dekker A, Malthus T (2016) Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens of Environ 185:108–118CrossRefGoogle Scholar
  73. Maritorena S, Siegel DA, Peterson AR (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Opt 41:2705PubMedCrossRefGoogle Scholar
  74. Matthews M (2011) A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int J Remote Sens 32:37–41CrossRefGoogle Scholar
  75. Matthews MW, Odermatt D (2015) Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters. Remote Sens Environ 156:374–382CrossRefGoogle Scholar
  76. Matthews MW, Bernard S, Winter K (2010) Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens Environ 114:2070–2087CrossRefGoogle Scholar
  77. Matthews MW, Bernard S, Robertson L (2012) An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens Environ 124:637–652CrossRefGoogle Scholar
  78. Metsamaa L, Kutser T, Strömbeck N (2006) Recognising cyanobacterial blooms based on their optical signature: a modelling study. Boreal Environ Res 11:493–506Google Scholar
  79. Mishra S, Mishra DR (2014) A novel remote sensing algorithm to quantify phycocyanin in cyanobacterial algal blooms. Environ Res Lett 9:114003CrossRefGoogle Scholar
  80. Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, San Diego, CAGoogle Scholar
  81. Moisan JR, Moisan TAH, Linkswiler MA (2011) An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra. J Geophys Res 116:C09018CrossRefGoogle Scholar
  82. Morel A, Prieur L (1977) Analysis of variations in ocean color1. Limnol Oceanogr 22:709–722CrossRefGoogle Scholar
  83. Mouw CB, Chen H, McKinley GA, Effler S, O’Donnell D, Perkins MG, Strait C (2013) Evaluation and optimization of bio-optical inversion algorithms for remote sensing of Lake Superior’s optical properties. J Geophys Res Oceans 118:1696–1714CrossRefGoogle Scholar
  84. Odermatt D, Heege T, Nieke J, Kneubühler M, Itten K (2008) Water quality monitoring for Lake Constance with a physically based algorithm for MERIS data. Sensors 8:4582–4599PubMedCrossRefGoogle Scholar
  85. Odermatt D, Giardino C, Heege T (2010) Chlorophyll retrieval with MERIS Case-2-Regional in perialpine lakes. Remote Sens Environ 114:607–617CrossRefGoogle Scholar
  86. Odermatt D, Gitelson A, Brando VE, Schaepman M (2012a) Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens Environ 118:116–126CrossRefGoogle Scholar
  87. Odermatt D, Pomati F, Pitarch J, Carpenter J, Kawka M, Schaepman M, Wüest A (2012b) MERIS observations of phytoplankton blooms in a stratified eutrophic lake. Remote Sens Environ 126:232–239CrossRefGoogle Scholar
  88. Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens Environ 112:4086–4097CrossRefGoogle Scholar
  89. Olmanson LG, Brezonik PL, Bauer ME (2013) Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. Remote Sens Environ 130:254–265CrossRefGoogle Scholar
  90. Oyama Y, Matsushita B, Fukushima T, Nagai T, Imai A (2007) A new algorithm for estimating chlorophyll-aconcentration from multi-spectral satellite data in case II waters: a simulation based on a controlled laboratory experiment. Int J Remote Sens 28:1437–1453CrossRefGoogle Scholar
  91. Oyama Y, Matsushita B, Fukushima T, Imai A (2009) Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data. ISPRS J Photogramm Remote Sens 64:73–85CrossRefGoogle Scholar
  92. Palmer SCJ, Odermatt D, Hunter PD, Brockmann C, Présing M, Balzter H, Tóth VR (2015) Satellite remote sensing of phytoplankton phenology in Lake Balaton using 10 years of MERIS observations. Remote Sens Environ 158:441–452CrossRefGoogle Scholar
  93. Pinkerton MH, Moore GF, Lavender SJ, Gall MP, Oubelkheir K, Richardson KM, Boyd PW, Aiken J (2006) A method for estimating inherent optical properties of New Zealand continental shelf waters from satellite ocean colour measurements. N Z J Mar Freshw Res 40:227–247CrossRefGoogle Scholar
  94. Pope RM, Fry ES (1997) Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723PubMedCrossRefGoogle Scholar
  95. Preisendorfer RW (1976) Hydrologic optics. Environmental Research. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory, HonoluluGoogle Scholar
  96. Purss MBJ, Lewis A, Oliver S, Ip A, Sixsmith J, Evans B, Edberg R, Frankish G, Hurst L, Chan T (2015) Unlocking the Australian Landsat archive – from dark data to high performance data infrastructures. GeoResJ 6:135–140CrossRefGoogle Scholar
  97. Rose KC, Greb SR, Diebel M, Turner MG (2017) Annual precipitation regulates spatial and temporal drivers of lake water clarity. Ecol Appl 27:632–643PubMedCrossRefGoogle Scholar
  98. Ruddick KG, Ovidio F, Rijkeboer M (2000) Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl Opt 39:897PubMedCrossRefGoogle Scholar
  99. Rudorff C (2006) Spectral mixture analysis for water quality assessment over the Amazon floodplain using hyperion/EO-1 images. AMBIAGUA 1:65–79Google Scholar
  100. Ryan JP, Davis CO, Tufillaro NB, Kudela RM, Gao B-C (2014) Application of the hyperspectral imager for the coastal ocean to phytoplankton ecology studies in Monterey Bay, CA, USA. Remote Sens 6:1007–1025CrossRefGoogle Scholar
  101. Santer R, Schmechtig C (2000) Adjacency effects on water surfaces: primary scattering approximation and sensitivity study. Appl Opt 39:361PubMedCrossRefGoogle Scholar
  102. Sawaya K, Olmanson LG, Heinert NJ, Bauer ME (2003) Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sens Environ 88:144–156CrossRefGoogle Scholar
  103. Schroeder T, Behnert I, Schaale M, Fischer J, Doerffler R (2007) Atmospheric correction algorithm for MERIS above case-2 waters. Int J Remote Sens 28:1469–1486CrossRefGoogle Scholar
  104. Shuchman R, Korosov A, Hatt C, Pozdnyakov D, Means J, Meadows G (2006) Verification and application of a bio-optical algorithm for Lake Michigan using SeaWiFS: a 7-year inter-annual analysis. J Great Lakes Res 32:258–279CrossRefGoogle Scholar
  105. Stramski D, Boss E, Bogucki D, Voss KJ (2004) The role of seawater constituents in light backscattering in the ocean. Prog Oceanogr 61:27–56CrossRefGoogle Scholar
  106. Twardowski MS, Boss E, Macdonald JB, Pegau WS, Barnard AH, Zaneveld JRV (2001) A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J Geophys Res Oceans 106:14129–14142CrossRefGoogle Scholar
  107. Tyler AN, Svab E, Preston T, Présing M, Kovács WA (2006) Remote sensing of the water quality of shallow lakes: a mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment. Int J Remote Sens 27:1521–1537CrossRefGoogle Scholar
  108. Tzortziou M, Herman JR, Gallegos CL, Neale PJ, Subramaniam A, Harding LW Jr, Ahmad Z (2006) Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure. Estuar Coast Shelf Sci 68:348–362CrossRefGoogle Scholar
  109. Vanderwoerd H, Pasterkamp R (2008) HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters. Remote Sens Environ 112:1795–1807CrossRefGoogle Scholar
  110. Vidot J, Santer R (2005) Atmospheric correction for inland waters—application to SeaWiFS. Int J Remote Sens 26:3663–3682CrossRefGoogle Scholar
  111. Volten H, De Haan J, Hovenier J (1998) Laboratory measurements of angular distributions of light scattered by phytoplankton and silt. Limnol Oceanogr 46:1180–1197CrossRefGoogle Scholar
  112. Wang M, Son S, Shi W (2009) Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sens Environ 113:635–644CrossRefGoogle Scholar
  113. Witter DL, Ortiz JD, Palm S, Heath RT, Budd JW (2009) Assessing the application of SeaWiFS ocean color algorithms to Lake Erie. J Great Lakes Res 35:361–370CrossRefGoogle Scholar
  114. Yacobi YZ, Gitelson A, Mayo M (1995) Remote sensing of chlorophyll in Lake Kinneret using high spectral resolution radiometer and Landsat TM: spectral features of reflectance and algorithm development. J Plankton Res 17:2155–2173CrossRefGoogle Scholar
  115. Yentsch CS, Yentsch CM (1979) Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectra. J Mar Res 37:471–483Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mathew G. Allan
    • 1
  • Chris G. McBride
    • 1
  1. 1.Environmental Research Institute, The University of WaikatoHamiltonNew Zealand

Personalised recommendations