Advertisement

Detecting Complex Sensitive Information via Phrase Structure in Recursive Neural Networks

  • Jan NeerbekEmail author
  • Ira Assent
  • Peter Dolog
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10939)

Abstract

State-of-the-art sensitive information detection in unstructured data relies on the frequency of co-occurrence of keywords with sensitive seed words. In practice, however, this may fail to detect more complex patterns of sensitive information. In this work, we propose learning phrase structures that separate sensitive from non-sensitive documents in recursive neural networks. Our evaluation on real data with human labeled sensitive content shows that our new approach outperforms existing keyword based strategies.

Keywords

Sensitive information Recursive neural networks Data leak prevention Natural text understanding 

Notes

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 645198 (Organicity Project) and No. 732240 (Synchronicity Project).

References

  1. 1.
    Berardi, G., Esuli, A., Macdonald, C., Ounis, I., Sebastiani, F.: Semi-automated text classification for sensitivity identification. In: CIKM, pp. 1711–1714 (2015)Google Scholar
  2. 2.
    Chow, R., Philippe, G., Staddon, J.: Detecting privacy leaks using corpus-based association rules. In: ACM SIGKDD, pp. 893–901 (2008)Google Scholar
  3. 3.
    Cormack, G.V., Grossman, M.R., Hedin, B., Oard, D.W.: Overview of the TREC 2010 legal track. In: TREC (2010)Google Scholar
  4. 4.
    Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. In: IEEE ICNN, pp. 347–352 (1996)Google Scholar
  5. 5.
    Grechanik, M., McMillan, C., Dasgupta, T., Poshyvanyk, D., Gethers, M.: Redacting sensitive information in software artifacts. In: ICPC, pp. 314–325 (2014)Google Scholar
  6. 6.
    Hart, M., Manadhata, P., Johnson, R.: Text classification for data loss prevention. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 18–37. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22263-4_2CrossRefGoogle Scholar
  7. 7.
    Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. In: NIPS, pp. 2096–2104 (2014)Google Scholar
  8. 8.
    Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30115-8_22CrossRefGoogle Scholar
  9. 9.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)Google Scholar
  10. 10.
    Sánchez, D., Batet, M.: C-sanitized: a privacy model for document redaction and sanitization. JASIST 67, 148–163 (2016)Google Scholar
  11. 11.
    Socher, R., Huang, E.H., Pennin, J., Manning, C.D., Ng, A.Y.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: NIPS (2011)Google Scholar
  12. 12.
    Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: ICML, pp. 129–136 (2011)Google Scholar
  13. 13.
    Socher, R., Manning, C.D., Ng, A.Y.: Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: NIPS WS Deep Learning and Unsupervised Feature Learning, pp. 1–9 (2010)Google Scholar
  14. 14.
    Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP, pp. 1631–1642 (2013)Google Scholar
  15. 15.
    Taylor, A., Marcus, M., Santorini, B.: The Penn treebank: an overview. In: Abeillé, A. (ed.) Treebanks. Text, Speech and Language Technology, vol. 20. Springer, Dordrecht (2003).  https://doi.org/10.1007/978-94-010-0201-1_1CrossRefGoogle Scholar
  16. 16.
    Tomlinson, S.: Learning task experiments in the TREC 2010 legal track. In: TREC (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark
  2. 2.Alexandra InstituteAarhusDenmark
  3. 3.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations