Advertisement

Electrokinetics

  • Zhen (Leo) Liu
Chapter

Abstract

Electrokinetics includes a family of phenomena resulting from the distributions of charges and electric potentials at interfaces between different phases. In porous materials, these two phases primarily refer to the solid phase such as clay particles and the liquid phase such as water. In this chapter, we will first discuss the double layer theory, which sets the basis for understanding the electrokinetic phenomena. Then three sections will be devoted to electroosmosis, electromigration, and electrophoresis for the transport of water, free ions, and charged particles in soils, respectively, under the influence of an external electric field. Later, we will combine these theories into a complete framework for considering these three major types of electrokinetic phenomena. A practice problem developed based on a lab test will be introduced in the last section.

Keywords

Electrokinetics Double layer DLVO theory Electroosmosis Electromigration Electrophoresis Transport Electric field Soils 

References

  1. Abousleiman Y, Cheng A, Cui L, Detournay E, Roegiers J (1996) Mandel’s problem revisited. Geotechnique 46(2):187–195CrossRefGoogle Scholar
  2. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647CrossRefGoogle Scholar
  3. Allen MB III (1988) Basic mechanics of oil reservoir flows. In: Multiphase flow in porous media. Springer, New York, pp 1–86CrossRefGoogle Scholar
  4. Alshawabkeh AN, Yeung AT, Bricka MR (1999) Practical aspects of in-situ electrokinetic extraction. J Environ Eng 125(1):27–35CrossRefGoogle Scholar
  5. Anderson DM, Tice AR, McKim HL (1973) The unfrozen water and the apparent specific heat capacity of frozen soils. In: Second international conference on Permafrost, Yakutsk, USSR. North American Contribution, pp 289–295Google Scholar
  6. Balanis CA (1999) Advanced engineering electromagnetics. Wiley, New YorkGoogle Scholar
  7. Barrett AH, Cardello AV (2012) Military food engineering and ration technology. DEStech Publications, Inc., LancasterGoogle Scholar
  8. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164CrossRefGoogle Scholar
  9. Biot MA (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178CrossRefGoogle Scholar
  10. Biot MA (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191CrossRefGoogle Scholar
  11. Biot M, Willis D (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601Google Scholar
  12. Bjerrum L, Moum J, Eide O (1967) Application of electro-osmosis to a foundation problem in a Norwegian quick clay. Geotechnique 17(3):214–235CrossRefGoogle Scholar
  13. Buchner R, Barthel J, Stauber J (1999) The dielectric relaxation of water between 0 C and 35 C. Chem Phys Lett 306(1):57–63CrossRefGoogle Scholar
  14. Campbell GS (1974) A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci 117(6):311–314CrossRefGoogle Scholar
  15. Campbell GS (1985) Soil physics with BASIC: transport models for soil-plant systems, vol 14. Elsevier, AmsterdamGoogle Scholar
  16. Carcione JM, Morency C, Santos JE (2010) Computational poroelasticity-a review. Geophysics 75:75A229–75A243CrossRefGoogle Scholar
  17. Cary J (1965) Water flux in moist soil: thermal versus suction gradients. Soil Sci 100:168–175CrossRefGoogle Scholar
  18. Cary J (1966) Soil moisture transport due to thermal gradients: practical aspects. Soil Sci Soc Am J 30(4):428–433CrossRefGoogle Scholar
  19. Casagrande IL (1949) Electro-osmosis in soils. Geotechnique 1(3):159–177CrossRefGoogle Scholar
  20. Casagrande L (1983) Stabilization of soils by means of electro-osmosis: state of the art. J Boston Soc Civil Eng 69(2):255–302Google Scholar
  21. Celia MA, Binning P (1992) A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow. Water Resour Res 28(10):2819–2828CrossRefGoogle Scholar
  22. Chapli M (2017) Water structure and scienceGoogle Scholar
  23. Childs EC, Collis-George N (1950) The permeability of porous materials. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 1066. The Royal Society, pp 392–405CrossRefGoogle Scholar
  24. Cho J, Kim K, Chung K, Hyun S, Baek K (2009) Restoration of saline soil in cultivated land using electrokinetic process. Sep Sci Technol 44(10):2371–2384CrossRefGoogle Scholar
  25. Chung H, Kang B (1999) Lead removal from contaminated marine clay by electrokinetic soil decontamination. Eng Geol 53(2):139–150CrossRefGoogle Scholar
  26. COMSOL COMSOL example library. https://www.comsol.com/models/page/2
  27. Corwin D, Plant R (2005) Applications of apparent soil electrical conductivity in precision agriculture. Comput Electron Agric 46(1):1–10CrossRefGoogle Scholar
  28. Courtney M (2015) Multiphysics brings the real world into simulations. E&T Magazine, vol 10Google Scholar
  29. Coussy (2004) The atrium, Southern gate, Chichester, West Sussex PO19 8SQ. John Wiley & Sons Ltd, EnglandGoogle Scholar
  30. Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238CrossRefGoogle Scholar
  31. Cross M, Slone A (2005) FENet-multi-physics analysis (MPA) theme: a review of commercial MPA capability in 2005. In: Proceedings of the FENet Project Review Meeting, St. Julians, Malta, pp 119–130Google Scholar
  32. de Boer R (2000) Contemporary progress in porous media theory. Appl Mech Rev 53(12):323–370CrossRefGoogle Scholar
  33. De Vries DA (1963) Thermal properties of soils. In: Physics of plant environment. North-Holland Publishing Co., AmsterdamCrossRefGoogle Scholar
  34. Dede EM, Lee J, Nomura T (2014) Multiphysics simulation: electromechanical system applications and optimization. Springer-Verlag, London https://www.springer.com/us/book/9781447156390CrossRefGoogle Scholar
  35. Deen WM (1998) Analysis of transport phenomena. Oxford University Press, New YorkGoogle Scholar
  36. Dennis MR, Glendinning P, Martin PA, Santosa F, Tanner J (2015) The Princeton companion to applied mathematics. Princeton University Press, PrincetonGoogle Scholar
  37. Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 14(6):633–662Google Scholar
  38. Detournay E, Cheng A (1993) Fundamental of Poroelasticity, Chapter 5. In: Fairhurst C (ed) Comprehensive rock engineering, vol 2. Pergamon Press, OxfordGoogle Scholar
  39. Doolittle JA, Brevik EC (2014) The use of electromagnetic induction techniques in soils studies. Geoderma 223:33–45CrossRefGoogle Scholar
  40. Doutres O, Salissou Y, Atalla N, Panneton R (2010) Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Appl Acoust 71(6):506–509CrossRefGoogle Scholar
  41. Engineering X (2009) Simulation of a water heater with FLOW-3DGoogle Scholar
  42. Esrig M, Gemeinhardt JP (1900) Electrokinetic stabilization of an illitic clay. J Soil Mech Found Div 92 (SM5, Proc Paper 490)Google Scholar
  43. Fernandes A, Pouget J (2003) Analytical and numerical approaches to piezoelectric bimorph. Int J Solids Struct 40(17):4331–4352CrossRefGoogle Scholar
  44. Ferronato M, Castelletto N, Gambolati G (2010) A fully coupled 3-D mixed finite element model of Biot consolidation. J Comput Phys 229(12):4813–4830CrossRefGoogle Scholar
  45. Fischer HB (1966) Longitudinal dispersion in laboratory and natural streams.Google Scholar
  46. Fisk M (2008) Simulation of induction heating in manufacturing. Thesis, Luleå Tekniska UniversitetGoogle Scholar
  47. Franks F (1972) Introduction – water, the unique chemical. In: Franks F (ed) Water a comprehensive treatise, vol 1. Plenum Press, New York, pp 1–20Google Scholar
  48. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New YorkCrossRefGoogle Scholar
  49. Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532CrossRefGoogle Scholar
  50. Fredlund D, Xing A, Huang S (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can Geotech J 31(4):533–546CrossRefGoogle Scholar
  51. Frenkel J (2005) On the theory of seismic and seismoelectric phenomena in a moist soil. J Eng Mech 131(9):879–887CrossRefGoogle Scholar
  52. Gardner W (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85(4):228–232CrossRefGoogle Scholar
  53. Gassmann F (1951) Elastic waves through a packing of spheres. Geophysics 16(4):673–685CrossRefGoogle Scholar
  54. Geertsma J (1957) A remark on the analogy between thermoelasticity and the elasticity of saturated porous media. J Mech Phys Solids 6(1):13–16CrossRefGoogle Scholar
  55. Ghia U, Ghia KN, Shin C (1982) High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48(3):387–411CrossRefGoogle Scholar
  56. Gibbard J (2013) Open Hand Project Website. http://www.openhandproject.org/
  57. Gouy M (1910) Sur la constitution de la charge électrique à la surface d'un électrolyte. Journal de Physique Théorique et Appliquée 9(1):457–468CrossRefGoogle Scholar
  58. Gray DH (1970) Electrochemical hardening of clay soils. Geotechnique 20(1):81–93CrossRefGoogle Scholar
  59. Groen D, Zasada SJ, Coveney PV (2014) Survey of multiscale and multiphysics applications and communities. Comput Sci Eng 16(2):34–43CrossRefGoogle Scholar
  60. Hackett RM (2016) Stress measures. In: Hyperelasticity primer. Springer, New York, pp 27–36CrossRefGoogle Scholar
  61. Hansson K, Šimůnek J, Mizoguchi M, Lundin L-C, Van Genuchten MT (2004) Water flow and heat transport in frozen soil. Vadose Zone J 3(2):693–704Google Scholar
  62. Harlan R (1973) Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res 9(5):1314–1323CrossRefGoogle Scholar
  63. Harlow FH, Nakayama PI (1968) Transport of turbulence energy decay rate. Report LA-3854, Los Alamos Scientific Laboratory, New MexicoGoogle Scholar
  64. Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput Mech 43(1):91–101CrossRefGoogle Scholar
  65. Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction-a review. Commun Comput Phys 12(2):337–377CrossRefGoogle Scholar
  66. Huang D, Xu Q, Cheng J, Lu X, Zhang H (2012) Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils. Int J Electrochem Sci 7(5):4528–4544Google Scholar
  67. Hunter RJ (2013) Zeta potential in colloid science: principles and applications, vol 2. Academic Press, LondonGoogle Scholar
  68. Huweg AFS (2013) Modelling of electrokinetic phenomena in soils. University of Southern QueenslandGoogle Scholar
  69. Irwin N, Botz M, Greenkorn R (1996) Experimental investigation of characteristic length scale in periodic heterogeneous porous media. Transp Porous Media 25(2):235–246CrossRefGoogle Scholar
  70. Jame YW, Norum DI (1980) Heat and mass transfer in a freezing unsaturated porous medium. Water Resour Res 16(4):811–819CrossRefGoogle Scholar
  71. Jasak H (2006) Multi-physics simulations in continuum mechanics. In: Proceedings of 5th international conference of croatian society of mechanics, TrogirGoogle Scholar
  72. Jasak H (1996) Error analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. Thesis, Imperial CollegeGoogle Scholar
  73. Jeong C-H (2011) Guideline for adopting the local reaction assumption for porous absorbers in terms of random incidence absorption coefficients. Acta Acustica united with Acustica 97(5):779–790CrossRefGoogle Scholar
  74. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13):3647–3679CrossRefGoogle Scholar
  75. Kapoor R, Nemat-Nasser S (1998) Determination of temperature rise during high strain rate deformation. Mech Mater 27(1):1–12CrossRefGoogle Scholar
  76. Kelder O (1997) Frequency-dependent wave propagation in water-saturated porous media. Technische Universiteit Delft, DelftGoogle Scholar
  77. Keyes DE, McInnes LC, Woodward C, Gropp W, Myra E, Pernice M, Bell J, Brown J, Clo A, Connors J (2013) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27(1):4–83CrossRefGoogle Scholar
  78. Kim S-O, Kim W-S, Kim K-W (2005) Evaluation of electrokinetic remediation of arsenic-contaminated soils. Environ Geochem Health 27(5):443–453CrossRefGoogle Scholar
  79. Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13(1):82–85CrossRefGoogle Scholar
  80. Koopmans RWR, Miller R (1966) Soil freezing and soil water characteristic curves. Soil Sci Soc Am J 30(6):680–685CrossRefGoogle Scholar
  81. Krishna R, Wesselingh J (1997) The Maxwell-Stefan approach to mass transfer. Chem Eng Sci 52(6):861–911CrossRefGoogle Scholar
  82. Krzhizhanovskaya VV (2007) Sun S simulation of Multiphysics multiscale systems: introduction to the ICCS’2007 workshop. In: International conference on computational science. Springer, Berlin/Heidelberg, pp 755–761Google Scholar
  83. Laboratories BT (1939) Method and apparatus for heating dielectric materials. Google PatentsGoogle Scholar
  84. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289CrossRefGoogle Scholar
  85. Lautrup B (2005) Physics of continuous matter. Exotic and everyday phenomena in the macroscopic world. IOP, BristolGoogle Scholar
  86. LeVeque RJ (2002) Finite volume methods for hyperbolic problems, vol 31. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  87. Liu Z, Yu X (2011) Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation. Acta Geotech 6(2):51–65CrossRefGoogle Scholar
  88. Liu Z, Yu X (2013) Physically based equation for phase composition curve of frozen soils. http://www.liurg.org/documents/Physically%20Based%20Equation%20for%20Phase%20Composition%20Curve%20of%20Frozen%20Soils.pdf
  89. Lo K, Ho K, Inculet I (1991) Field test of electroosmotic strengthening of soft sensitive clay. Can Geotech J 28(1):74–83CrossRefGoogle Scholar
  90. Logan BE (2012) Environmental transport processes. Wiley, New YorkCrossRefGoogle Scholar
  91. Luthin JN, Orhun A, Taylor GS (1975) Coupled saturated-unsaturated transient flow in porous media: experimental and numeric model. Water Resour Res 11(6):973–978CrossRefGoogle Scholar
  92. Mandel J (1953) Consolidation des sols (étude mathématique). Geotechnique 3(7):287–299CrossRefGoogle Scholar
  93. Manyuhina O, Shklyarevskiy I, Jonkheijm P, Christianen P, Fasolino A, Katsnelson M, Schenning A, Meijer E, Henze O, Kilbinger A (2007) Anharmonic magnetic deformation of self-assembled molecular nanocapsules. Phys Rev Lett 98(14):146101CrossRefGoogle Scholar
  94. Marc G, McMillan WG (1985) The virial theorem. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 58. Wiley, HobokenGoogle Scholar
  95. Massabó M, Cianci R, Paladino O (2011) An analytical solution of the advection dispersion equation in a bounded domain and its application to laboratory experiments. J Appl Math 2011:493014CrossRefGoogle Scholar
  96. Mattson ED, Bowman RS, Lindgren ER (2002) Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing. J Contam Hydrol 54(1):99–120CrossRefGoogle Scholar
  97. McInnes K (1981) Thermal Conductivities of Soils from Dryland Wheat Regions of Eastern Washington. MS Thesis, Washington State UniversityGoogle Scholar
  98. Merxhani A (2016) An introduction to linear poroelasticity. arXiv preprint arXiv:160704274Google Scholar
  99. Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New YorkGoogle Scholar
  100. Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride E, Mahadevan L, Charras GT (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12(3):253–261CrossRefGoogle Scholar
  101. Moin P, Mahesh K (1998) Direct numerical simulation: a tool in turbulence research. Annu Rev Fluid Mech 30(1):539–578CrossRefGoogle Scholar
  102. Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys Fluids 11(4):943–945CrossRefGoogle Scholar
  103. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522CrossRefGoogle Scholar
  104. Mualem Y (1986) Hydraulic conductivity of unsaturated soils: prediction and formulas. In: Methods of soil analysis: Part 1-Physical and mineralogical methods. American Society of Agronomy, Soil Science Society of America, Madison, pp 799–823Google Scholar
  105. Nepf H (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489CrossRefGoogle Scholar
  106. Newman GP, Wilson GW (1997) Heat and mass transfer in unsaturated soils during freezing. Can Geotech J 34(1):63–70CrossRefGoogle Scholar
  107. Noborio K, McInnes K, Heilman J (1996) Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: II. Field evaluation. Soil Sci Soc Am J 60(4):1010–1021CrossRefGoogle Scholar
  108. Noorishad J, Tsang C, Witherspoon P (1992) Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks—1. Development and verification of a numerical simulator. Int J Rock Mech Mining Sci Geomech Abstracts 4. Elsevier:401–409CrossRefGoogle Scholar
  109. Ohm GS (1827) Die galvanische Kette, mathematisch bearbeitet. TH Riemann, BerlinCrossRefGoogle Scholar
  110. Overbeek JTG, Kruyt H (1952) Colloid science. In: Kruyt HR (ed) Kinetics of flocculation, vol 1. Elsevier, Amsterdam, pp 278–300Google Scholar
  111. Penta R, Ambrosi D, Shipley R (2014) Effective governing equations for poroelastic growing media. Q J Mech Appl Math 67(1):69–91CrossRefGoogle Scholar
  112. Perrin J (1904) Mécanisme de l'électrisation de contact et solutions colloidales. J Chim Phys 2:601–651CrossRefGoogle Scholar
  113. Perry JH (1950) Chemical engineers’ handbook. ACS Publications, New YorkGoogle Scholar
  114. Perry RH, Chilton CH (1973) Chemical engineers’ handbook. McGraw‐Hill, New YorkGoogle Scholar
  115. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252CrossRefGoogle Scholar
  116. Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517CrossRefGoogle Scholar
  117. Philip J, De Vries D (1957) Moisture movement in porous materials under temperature gradients. EOS Trans Am Geophys Union 38(2):222–232CrossRefGoogle Scholar
  118. Polyanin (1997), http://www.navier-stokes-equations.com/lecturenotes;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_14636605&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_14636605?id=176396Google Scholar
  119. Ponnamperuna FN, Tianco EM, Loy TA (1966) Ionic strengths of soil solutions composition variation with water content for desaturated soils. Soil Sci Soc Am J 35:436–442Google Scholar
  120. Qi Y, Zhang TC (2015) Sorption and desorption of testosterone at environmentally relevant levels: effects of aquatic conditions and soil particle size fractions. J Environ Eng 142(1):04015045CrossRefGoogle Scholar
  121. Rempel A, Buffett B (1997) Formation and accumulation of gas hydrate in porous media. J Geophys Res Solid Earth 102(B5):10151–10164CrossRefGoogle Scholar
  122. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333CrossRefGoogle Scholar
  123. Righetti PG, Van Oss CJ, Vanderhoff JW (1979) Electrokinetic separation methods. Elsevier/North-Holland Biomedical Press, AmsterdamGoogle Scholar
  124. Roberts PJ, Webster DR (2002) Turbulent diffusion. ASCE Press, RestonGoogle Scholar
  125. Rudnev V, Loveless D, Cook RL (2017) Handbook of induction heating. CRC Press, Boca RatonCrossRefGoogle Scholar
  126. Rudnick JW (2001) Linear PoroelasticityCrossRefGoogle Scholar
  127. Ruge JW, Stüben K (1987) Algebraic multigrid. Multigrid Methods 3(13):73–130CrossRefGoogle Scholar
  128. Rutqvist J, Börgesson L, Chijimatsu M, Kobayashi A, Jing L, Nguyen T, Noorishad J, Tsang C-F (2001) Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models. Int J Rock Mech Min Sci 38(1):105–127CrossRefGoogle Scholar
  129. Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction. Springer Science & Business MediaGoogle Scholar
  130. Sahimi M (2011) Flow and transport in porous media and fractured rock: from classical methods to modern approaches. Wiley, HobokenCrossRefGoogle Scholar
  131. Sawada S (1977) Temperature dependence of thermal conductivity of frozen soil. Memoirs of the Kitami Institute of Technology 9(1):111–122Google Scholar
  132. Schanz M, Diebels S (2003) A comparative study of Biot's theory and the linear theory of porous media for wave propagation problems. Acta Mech 161(3):213–235Google Scholar
  133. Schmitt FG (2007) About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus Mécanique 335(9–10):617–627CrossRefGoogle Scholar
  134. Scott DM, Das DK, Subbaihaannadurai V (2006) A finite element computational method for gas hydrate. Part I: Theory. Petroleum Sci Technol 24(8):895–909CrossRefGoogle Scholar
  135. Sharma R (2012) Viscous incompressible flow simulation using penalty finite element method. In: EPJ web of conferences. EDP Sciences, p 01085CrossRefGoogle Scholar
  136. Spaans EJ, Baker JM (1996) The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic. Soil Sci Soc Am J 60(1):13–19CrossRefGoogle Scholar
  137. Spalart PR (2009) Detached-eddy simulation. Annu Rev Fluid Mech 41:181–202CrossRefGoogle Scholar
  138. Stephanson O, Jing L, Tsang C-F (1997) Coupled thermo-hydro-mechanical processes of fractured media: mathematical and experimental studies, vol 79. Elsevier, Amsterdam https://www.elsevier.com/books/coupled-thermo-hydromechanical-processes-of-fractured-media/stephanson/978-0-444-82545-2Google Scholar
  139. Stern O (1924) The theory of the electrolytic double-layer. Z Elektrochem 30(508):1014–1020Google Scholar
  140. Subramaniyan AK, Sun C (2008) Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct 45(14):4340–4346CrossRefGoogle Scholar
  141. Sullivan ME (2008) Remediation of arsenic and persistent organic contaminants using enhanced in-situ methods. Colorado State University, Fort CollinsGoogle Scholar
  142. Swenson RJ (1983) Comments on virial theorems for bounded systems. Am J Phys 51(10):940–942CrossRefGoogle Scholar
  143. Taber LA (2004) Nonlinear theory of elasticity: applications in biomechanics. World Scientific, SingaporeCrossRefGoogle Scholar
  144. Tamagnini C, Jommi C, Cattaneo F (2010) A model for coupled electro-hydro-mechanical processes in fine grained soils accounting for gas generation and transport. An Acad Bras Cienc 82(1):169–193CrossRefGoogle Scholar
  145. Terzaghi K (1925) Principles of soil mechanics, IV-settlement and consolidation of clay. Eng News-Record 95(3):874–878Google Scholar
  146. Thilmany J (2010) Multiphysics: all at once. Mech Eng 132(2):39Google Scholar
  147. Thomas H, He Y (1995) Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil. Geotechnique 45(4):677–689CrossRefGoogle Scholar
  148. Thomas H, He Y (1997) A coupled heat-moisture transfer theory for deformable unsaturated soil and its algorithmic implementation. Int J Numer Methods Eng 40(18):3421–3441CrossRefGoogle Scholar
  149. Thomas HR, King SD (1991) Coupled temperature/capillary potential variations in unsaturated soil. J Eng Mech 117(11):2475–2491CrossRefGoogle Scholar
  150. Thomas HR, Cleall PJ, Li Y, Harris C, Kern-Luetschg M (2009) Modelling of cryogenic processes in permafrost and seasonally frozen soils. Geotechnique 59(3):173–184CrossRefGoogle Scholar
  151. Toro EF (2013) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, Berlin/HeidelbergGoogle Scholar
  152. Tsai D (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70(3):1375–1382CrossRefGoogle Scholar
  153. Van Brakel J, Heertjes P (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int J Heat Mass Transf 17(9):1093–1103CrossRefGoogle Scholar
  154. van Dalen KN (2013) Multi-component acoustic characterization of porous media. Springer Science & Business MediaGoogle Scholar
  155. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  156. Verruijt A (1969) In: De Wiest RJM (ed) Elastic storage of aquifers in flow through porous media. Academic Press, New YorkGoogle Scholar
  157. Verruijt A (2013) Theory and problems of poroelasticity. Delft University of Technology, DelftGoogle Scholar
  158. Verwey E (1947) Theory of the stability of lyophobic colloids. J Phys Chem 51(3):631–636CrossRefGoogle Scholar
  159. Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation-critical overview. Sci Total Environ 289(1):97–121CrossRefGoogle Scholar
  160. von Smoluchowski M (1903) Contribution to the theory of electro-osmosis and related phenomena. Bulletin International de l'Académie des Sciences de Cracovie 3:184–199Google Scholar
  161. Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, PrincetonGoogle Scholar
  162. Watanabe K, Flury M (2008) Capillary bundle model of hydraulic conductivity for frozen soil. Water Resour Res 44(12):1–9CrossRefGoogle Scholar
  163. Water A (1972) In: Franks F (ed) Comprehensive treatise, vol 1982. Plenum, New York, pp 1–7Google Scholar
  164. Weinberg S (1977) The search for unity: notes for a history of quantum field theory. Daedalus 2:17–35Google Scholar
  165. Wesseling P, Oosterlee CW (2001) Geometric multigrid with applications to computational fluid dynamics. J Comput Appl Math 128(1):311–334CrossRefGoogle Scholar
  166. Wilcox DC (1998) Turbulence modeling for CFD, vol 2. DCW Industries, La CanadaGoogle Scholar
  167. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51CrossRefGoogle Scholar
  168. Yakhot V, Orszag S, Thangam S, Gatski T, Speziale C (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A Fluid Dynamics 4(7):1510–1520CrossRefGoogle Scholar
  169. Yuan J, Hicks M (2013) Large deformation elastic electro-osmosis consolidation of clays. Comput Geotech 54:60–68CrossRefGoogle Scholar
  170. Zhao C, Yang C (2012) Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid Nanofluid 13(2):179–203CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zhen (Leo) Liu
    • 1
  1. 1.Michigan Technological UniversityHoughtonUSA

Personalised recommendations