Advertisement

Quasi-Spherical Subsonic Accretion onto Magnetized Neutron Stars

  • Nikolay Shakura
  • Konstantin Postnov
  • Alexandra Kochetkova
  • Linnea Hjalmarsdotter
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 454)

Abstract

A theory of quasi-spherical subsonic accretion onto slowly rotating magnetized neutron stars is presented. In this regime, the accreted matter settles with subsonic velocities onto the rotating magnetosphere forming an extended quasi-spherical shell. The accretion rate in the shell is determined by the ability of the plasma to enter the magnetosphere due to the Rayleigh-Taylor instability with account for cooling. This accretion regime may be established for moderate X-ray luminosities, corresponding to accretion rates \(\dot M< \dot M^\dag \simeq 4\times 10^{16}\) g s−1. For higher accretion rates a free-fall gap appears, due to strong Compton cooling of the flow above the magnetosphere, and accretion becomes highly non-stationary. Observations of spin-up and spin-down in equilibrium wind-fed X-ray pulsars with known orbital periods (like GX 301-2 and Vela X-1) enable the determination of the basic dimensionless model parameters and estimation of the neutron star magnetic field. In equilibrium pulsars with independently measured magnetic fields, the model enables the stellar wind velocity to be independently estimated. For non-equilibrium pulsars, there exists a maximum spin-down rate of the accreting neutron star. The model can also explain bright flares in Supergiant Fast X-ray Transients if stellar winds of the O-supergiant companions are magnetized.

References

  1. Arons J, Lea SM (1976) Accretion onto magnetized neutron stars - structure and interchange instability of a model magnetosphere. Astrophys J 207:914–936. https://doi.org/10.1086/154562 ADSCrossRefGoogle Scholar
  2. Beskin VS (2010) MHD flows in compact astrophysical objects. Springer, Berlin. https://doi.org/10.1007/978-3-642-01290-7 zbMATHCrossRefGoogle Scholar
  3. Bildsten L, Chakrabarty D, Chiu J, Finger MH, Koh DT, Nelson RW, Prince TA, Rubin BC, Scott DM, Stollberg M, Vaughan BA, Wilson CA, Wilson RB (1997) Observations of accreting pulsars. Astrophys J Suppl 113:367–408. https://doi.org/10.1086/313060. ArXiv:astro-ph/9707125ADSCrossRefGoogle Scholar
  4. Bisnovatyi-Kogan GS (1991) Rotational equilibrium of long-periodic X-ray pulsars. Astron Astrophys 245:528–530ADSGoogle Scholar
  5. Bondi H (1952) On spherically symmetrical accretion. Mon Not R Astron Soc 112:195.  https://doi.org/10.1093/mnras/112.2.195 ADSMathSciNetCrossRefGoogle Scholar
  6. Bozzo E, Falanga M, Stella L (2008) Are there magnetars in high-mass X-ray binaries? The case of supergiant fast X-ray transients. Astrophys J 683:1031–1044. https://doi.org/10.1086/589990. ArXiv:0805.1849ADSCrossRefGoogle Scholar
  7. Bradshaw P (1969) The analogy between streamline curvature and buoyancy in turbulent shear flow. J Fluid Mech 36:177–191. https://doi.org/10.1017/S0022112069001583 ADSzbMATHCrossRefGoogle Scholar
  8. Braithwaite J (2013) The nature and origin of magnetic fields in early-type stars. ArXiv:1312.4755ADSGoogle Scholar
  9. Bruno R, Carbone V (2013) The solar wind as a turbulence laboratory. Living Rev Sol Phys 10(2).  https://doi.org/10.12942/lrsp-2013-2
  10. Burnard DJ, Arons J, Lea SM (1983) Accretion onto magnetized neutron stars - X-ray pulsars with intermediate rotation rates. Astrophys J 266:175–187. https://doi.org/10.1086/160768 ADSCrossRefGoogle Scholar
  11. Chashkina A, Popov SB (2012) Magnetic field estimates for accreting neutron stars in massive binary systems and models of magnetic field decay. New Astron 17:594–602. https://doi.org/10.1016/j.newast.2012.01.004. ArXiv:1112.1123ADSCrossRefGoogle Scholar
  12. Chaty S, Rahoui F, Foellmi C, Tomsick JA, Rodriguez J, Walter R (2008) Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. I. The nature of the companion star. Astron Astrophys 484:783–800. https://doi.org/10.1051/0004-6361:20078768. ArXiv:0802.1774ADSCrossRefGoogle Scholar
  13. Cowie LL, McKee CF, Ostriker JP (1981) Supernova remnant revolution in an inhomogeneous medium. I - numerical models. Astrophys J 247:908–924. https://doi.org/10.1086/159100 ADSCrossRefGoogle Scholar
  14. Davidson K, Ostriker JP (1973) Neutron-star accretion in a stellar wind: model for a pulsed X-ray source. Astrophys J 179:585–598. https://doi.org/10.1086/151897 ADSCrossRefGoogle Scholar
  15. Davies RE, Pringle JE (1981) Spindown of neutron stars in close binary systems. II. Mon Not R Astron Soc 196:209–224.  https://doi.org/10.1093/mnras/196.2.209 ADSCrossRefGoogle Scholar
  16. Doroshenko V, Santangelo A, Suleimanov V, Kreykenbohm I, Staubert R, Ferrigno C, Klochkov D (2010) Is there a highly magnetized neutron star in GX 301-2? Astron Astrophys 515:A10ADSCrossRefGoogle Scholar
  17. Doroshenko V, Santangelo A, Suleimanov V (2011) Witnessing the magnetospheric boundary at work in Vela X-1. Astron Astrophys 529:A52. https://doi.org/10.1051/0004-6361/201116482. ArXiv:1102.5254ADSCrossRefGoogle Scholar
  18. Ducci L, Sidoli L, Mereghetti S, Paizis A, Romano P (2009) The structure of blue supergiant winds and the accretion in supergiant high-mass X-ray binaries. Mon Not R Astron Soc 398:2152–2165. https://doi.org/10.1111/j.1365-2966.2009.15265.x. ArXiv:0906.3185ADSCrossRefGoogle Scholar
  19. Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47–48.  https://doi.org/10.1103/PhysRevLett.6.47 ADSCrossRefGoogle Scholar
  20. Elsner RF, Lamb FK (1977) Accretion by magnetic neutron stars. I - magnetospheric structure and stability. Astrophys J 215:897–913. https://doi.org/10.1086/155427 ADSCrossRefGoogle Scholar
  21. Fryxell BA, Taam RE (1988) Numerical simulation of nonaxisymmetric adiabatic accretion flow. Astrophys J 335:862–880. https://doi.org/10.1086/166973 ADSCrossRefGoogle Scholar
  22. Fürst F, Kreykenbohm I, Pottschmidt K, Wilms J, Hanke M, Rothschild RE, Kretschmar P, Schulz NS, Huenemoerder DP, Klochkov D, Staubert R (2010) X-ray variation statistics and wind clumping in vela X-1. Astron Astrophys 519:A37. https://doi.org/10.1051/0004-6361/200913981. ArXiv:1005.5243ADSCrossRefGoogle Scholar
  23. Ghosh P, Lamb FK (1979) Accretion by rotating magnetic neutron stars. III - accretion torques and period changes in pulsating X-ray sources. Astrophys J 234:296–316. https://doi.org/10.1086/157498 ADSCrossRefGoogle Scholar
  24. González-Galán A, Kuulkers E, Kretschmar P, Larsson S, Postnov K, Kochetkova A, Finger MH (2012) Spin period evolution of GX 1+4. Astron Astrophys 537:A66. https://doi.org/10.1051/0004-6361/201117893. ArXiv:1111.6791ADSCrossRefGoogle Scholar
  25. Grebenev SA, Sunyaev RA (2007) The first observation of AX J1749.1-2733 in a bright X-ray state-Another fast transient revealed by INTEGRAL. Astron Lett 33:149–158. https://doi.org/10.1134/S1063773707030024 ADSCrossRefGoogle Scholar
  26. Grebenev SA, Lutovinov AA, Sunyaev RA (2003) New outburst of IGR J17544-2619. The Astronomer’s Telegram 192:1Google Scholar
  27. Hatchett S, Buff J, McCray R (1976) Transfer of X-rays through a spherically symmetric gas cloud. Astrophys J 206:847–860. https://doi.org/10.1086/154448 ADSCrossRefGoogle Scholar
  28. Ikhsanov NR, Beskrovnaya NG (2012) Signs of magnetic accretion in X-ray pulsars. Astron Rep 56:589–594. https://doi.org/10.1134/S1063772912070037. ArXiv:1205.2846ADSCrossRefGoogle Scholar
  29. Ikhsanov NR, Likh YS, Beskrovnaya NG (2014) Spin evolution of long-period X-ray pulsars. Astron Rep 58:376–385. https://doi.org/10.1134/S1063772914050035. ArXiv:1402.1029ADSCrossRefGoogle Scholar
  30. Illarionov AF, Kompaneets DA (1990) A spin-down mechanism for accreting neutron stars. Mon Not R Astron Soc 247:219ADSGoogle Scholar
  31. Illarionov AF, Sunyaev RA (1975) Why the number of galactic X-ray stars is so small? Astron Astrophys 39:185ADSGoogle Scholar
  32. in’t Zand JJM (2005) Chandra observation of the fast X-ray transient IGR J17544-2619: evidence for a neutron star? Astron Astrophys 441:L1–L4. https://doi.org/10.1051/0004-6361:200500162. ArXiv:astro-ph/0508240ADSCrossRefGoogle Scholar
  33. Kluźniak W, Rappaport S (2007) Magnetically torqued thin accretion disks. Astrophys J 671:1990–2005. https://doi.org/10.1086/522954. ArXiv:0709.2361ADSCrossRefGoogle Scholar
  34. Koh DT, Bildsten L, Chakrabarty D, Nelson RW, Prince TA, Vaughan BA, Finger MH, Wilson RB, Rubin BC (1997) Rapid spin-up episodes in the wind-fed accreting pulsar GX 301-2. Astrophys J 479:933–947. https://doi.org/10.1086/303929 ADSCrossRefGoogle Scholar
  35. Kompaneets A (1957) The establishment of thermal equilibrium between quanta and electrons. J Exp Theor Phys 4:730MathSciNetzbMATHGoogle Scholar
  36. Lamers HJGLM, van den Heuvel EPJ, Petterson JA (1976) Stellar winds and accretion in massive X-ray binaries. Astron Astrophys 49:327–335ADSGoogle Scholar
  37. Lovelace RVE, Romanova MM, Bisnovatyi-Kogan GS (1995) Spin-up/spin-down of magnetized stars with accretion discs and outflows. Mon Not R Astron Soc 275:244–254.  https://doi.org/10.1093/mnras/275.2.244. ArXiv:astro-ph/9412030ADSCrossRefGoogle Scholar
  38. Marykutty J, Biswajit P, Jincy D, Kavila I (2010) Discovery of a 0.02 hz qpo feature in the transient X-ray pulsar ks 1947+300. Mon Not R Astron Soc 407(1):285–290. https://doi.org/10.1111/j.1365-2966.2010.16880.x CrossRefGoogle Scholar
  39. Molkov S, Mowlavi N, Goldwurm A, Strong A, Lund N, Paul J, Oosterbroek T (2003) Igr J16479-4514. The Astronomer’s Telegram 176:1Google Scholar
  40. Monin AS, I’Aglom AM (1971) Statistical fluid mechanics; mechanics of turbulence. MIT Press, CambridgeGoogle Scholar
  41. Negueruela I, Smith DM, Reig P, Chaty S, Torrejón JM (2006) Supergiant fast X-ray transients: a new class of high mass X-ray binaries unveiled by INTEGRAL. In: Wilson A (ed) Proceedings of the “The X-ray Universe 2005”. ESA SP-604, vol 1, p 165Google Scholar
  42. Negueruela I, Torrejón JM, Reig P, Ribó M, Smith DM (2008) Supergiant fast X-ray transients and other wind accretors. In: Bandyopadhyay RM, Wachter S, Gelino D, Gelino CR (eds) AIP conference proceedings, vol 1010, pp 252–256. https://doi.org/10.1063/1.2945052
  43. Nelson RW, Bildsten L, Chakrabarty D, Finger MH, Koh DT, Prince TA, Rubin BC, Scott DM, Vaughan BA, Wilson RB (1997) On the dramatic spin-up/spin-down torque reversals in accreting pulsars. Astrophys J Lett 488:L117–L120. https://doi.org/10.1086/310936. ArXiv:astro-ph/9708193ADSCrossRefGoogle Scholar
  44. Oskinova LM, Feldmeier A, Kretschmar P (2012) Clumped stellar winds in supergiant high-mass X-ray binaries: X-ray variability and photoionization. Mon Not R Astron Soc 421:2820–2831. https://doi.org/10.1111/j.1365-2966.2012.20507.x. ArXiv:1201.1915ADSCrossRefGoogle Scholar
  45. Paizis A, Sidoli L (2014) Cumulative luminosity distributions of supergiant fast X-ray transients in hard X-rays. Mon Not R Astron Soc 439:3439–3452.  https://doi.org/10.1093/mnras/stu191. ArXiv:1401.6861ADSCrossRefGoogle Scholar
  46. Parker EN (1963) Interplanetary dynamical processes. Interscience Publishers, New YorkzbMATHGoogle Scholar
  47. Pellizza LJ, Chaty S, Negueruela I (2006) IGR J17544-2619: a new supergiant fast X-ray transient revealed by optical/infrared observations. Astron Astrophys 455:653–658. https://doi.org/10.1051/0004-6361:20054436. ArXiv:arXiv:astro-ph/0605559ADSCrossRefGoogle Scholar
  48. Postnov K, Oskinova L, Torrejón JM (2017) A propelling neutron star in the enigmatic Be-star γ Cassiopeia. Mon Not R Astron Soc 465:L119–L123.  https://doi.org/10.1093/mnrasl/slw223. ArXiv:1610.07799ADSCrossRefGoogle Scholar
  49. Pringle JE, Rees MJ (1972) Accretion disc models for compact X-ray sources. Astron Astrophys 21:1ADSGoogle Scholar
  50. Puls J, Vink JS, Najarro F (2008) Mass loss from hot massive stars. Astron Astrophys Rev 16:209–325. https://doi.org/10.1007/s00159-008-0015-8. ArXiv:0811.0487ADSCrossRefGoogle Scholar
  51. Rahoui F, Chaty S, Lagage PO, Pantin E (2008) Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. II. The environment of the companion star. Astron Astrophys 484:801–813. https://doi.org/10.1051/0004-6361:20078774. ArXiv:0802.1770ADSCrossRefGoogle Scholar
  52. Raymond JC, Cox DP, Smith BW (1976) Radiative cooling of a low-density plasma. Astrophys J 204:290–292. https://doi.org/10.1086/154170 ADSCrossRefGoogle Scholar
  53. Romano P, La Parola V, Vercellone S, Cusumano G, Sidoli L, Krimm HA, Pagani C, Esposito P, Hoversten EA, Kennea JA, Page KL, Burrows DN, Gehrels N (2011) Two years of monitoring supergiant fast X-ray transients with Swift. Mon Not R Astron Soc 410:1825–1836. https://doi.org/10.1111/j.1365-2966.2010.17564.x. ArXiv:1009.1146
  54. Romano P, Krimm HA, Palmer DM, Ducci L, Esposito P, Vercellone S, Evans PA, Guidorzi C, Mangano V, Kennea JA, Barthelmy SD, Burrows DN, Gehrels N (2014) The 100-month Swift catalogue of supergiant fast X-ray transients. I. BAT on-board and transient monitor flares. Astron Astrophys 562:A2. https://doi.org/10.1051/0004-6361/201322516. ArXiv:1312.4955ADSCrossRefGoogle Scholar
  55. Ruffert M (1997) Non-axisymmetric wind-accretion simulations. I. Velocity gradients of 3% and 20% over one accretion radius. Astron Astrophys 317:793–814. ArXiv:astro-ph/9605072Google Scholar
  56. Ruffert M (1999) Non-axisymmetric wind-accretion simulations. II. Density gradients. Astron Astrophys 346:861–877. ArXiv:astro-ph/9903304Google Scholar
  57. Sedov LI (1959) Similarity and dimensional methods in mechanics. Academic, New YorkzbMATHGoogle Scholar
  58. Sguera V, Barlow EJ, Bird AJ, Clark DJ, Dean AJ, Hill AB, Moran L, Shaw SE, Willis DR, Bazzano A, Ubertini P, Malizia A (2005) INTEGRAL observations of recurrent fast X-ray transient sources. Astron Astrophys 444:221–231. https://doi.org/10.1051/0004-6361:20053103. ArXiv:astro-ph/0509018ADSCrossRefGoogle Scholar
  59. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355ADSGoogle Scholar
  60. Shakura NI, Sunyaev RA (1988) The theory of an accretion disk/neutron star boundary layer. Adv Space Res 8:135–140. https://doi.org/10.1016/0273-1177(88)90396-1 ADSCrossRefGoogle Scholar
  61. Shakura NI, Sunyaev RA, Zilitinkevich SS (1978) On the turbulent energy transport in accretion discs. Astron Astrophys 62:179–187ADSGoogle Scholar
  62. Shakura N, Postnov K, Kochetkova A, Hjalmarsdotter L (2012) Theory of quasi-spherical accretion in X-ray pulsars. Mon Not R Astron Soc 420:216–236. https://doi.org/10.1111/j.1365-2966.2011.20026.x. ArXiv:1110.3701ADSCrossRefGoogle Scholar
  63. Shakura N, Postnov K, Hjalmarsdotter L (2013a) On the nature of ‘off’ states in slowly rotating low-luminosity X-ray pulsars. Mon Not R Astron Soc 428:670–677.  https://doi.org/10.1093/mnras/sts062. ArXiv:1209.4962ADSCrossRefGoogle Scholar
  64. Shakura NI, Postnov KA, Kochetkova AY, Hjalmarsdotter L (2013b) Quasispherical subsonic accretion in X-ray pulsars. Phys Usp 56:321–346.  https://doi.org/10.3367/UFNe.0183.201304a.0337. ArXiv:1302.0500ADSCrossRefGoogle Scholar
  65. Shakura N, Postnov K, Sidoli L, Paizis A (2014a) Bright flares in supergiant fast X-ray transients. Mon Not R Astron Soc 442:2325–2330.  https://doi.org/10.1093/mnras/stu1027. ArXiv:1405.5707ADSCrossRefGoogle Scholar
  66. Shakura NI, Postnov KA, Kochetkova AY, Hjalmarsdotter L (2014b) Theory of wind accretion. In: European Physical Journal Web of conferences, vol 64, p 2001.  https://doi.org/10.1051/epjconf/20136402001. ArXiv:1307.3029CrossRefGoogle Scholar
  67. Sidoli L (2012) Supergiant fast X-ray transients: a review. In: Proceedings 9th INTEGRAL workshop. Published online at http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176, id.11. ArXiv:1301.7574
  68. Sidoli L, Romano P, Mereghetti S, Paizis A, Vercellone S, Mangano V, Götz D (2007) An alternative hypothesis for the outburst mechanism in supergiant fast X-ray transients: the case of IGR J11215-5952. Astron Astrophys 476:1307–1315. https://doi.org/10.1051/0004-6361:20078137. ArXiv:0710.1175ADSCrossRefGoogle Scholar
  69. Sidoli L, Romano P, Mangano V, Pellizzoni A, Kennea JA, Cusumano G, Vercellone S, Paizis A, Burrows DN, Gehrels N (2008) Monitoring supergiant fast X-Ray transients with swift. I. Behavior outside outbursts. Astrophys J 687:1230–1235. https://doi.org/10.1086/590077. ArXiv:0805.1808ADSCrossRefGoogle Scholar
  70. Sidoli L, Esposito P, Motta SE, Israel GL, Rodríguez Castillo GA (2016a) XMM-Newton discovery of mHz quasi-periodic oscillations in the high-mass X-ray binary IGR J19140+0951. Mon Not R Astron Soc 460:3637–3646.  https://doi.org/10.1093/mnras/stw1246. ArXiv:1605.06356ADSCrossRefGoogle Scholar
  71. Sidoli L, Paizis A, Postnov K (2016b) INTEGRAL study of temporal properties of bright flares in Supergiant Fast X-ray Transients. Mon Not R Astron Soc 457:3693–3701.  https://doi.org/10.1093/mnras/stw237. ArXiv:1601.07000ADSCrossRefGoogle Scholar
  72. Sunyaev RA, Grebenev SA, Lutovinov AA, Rodriguez J, Mereghetti S, Gotz D, Courvoisier T (2003) New source IGR J17544-2619 discovered with INTEGRAL. The Astronomer’s Telegram 190:1Google Scholar
  73. Syunyaev RA, Shakura NI (1977) Disk reservoirs in binary systems and prospects for observing them. Sov Astron Lett 3:138–141ADSGoogle Scholar
  74. Tarter CB, Tucker WH, Salpeter EE (1969) The interaction of X-ray sources with optically thin environments. Astrophys J 156:943. https://doi.org/10.1086/150026 ADSCrossRefGoogle Scholar
  75. Thorne KS, Blandford RD (2017) Modern classical physics optics, fluids, plasmas, elasticity, relativity, and statistical physics. Princeton University Press, PrincetonGoogle Scholar
  76. Vitrichenko EA, Nadyozhin DK, Razinkova TL (2007) Mass-luminosity relation for massive stars. Astron Lett 33:251–258. https://doi.org/10.1134/S1063773707040044 ADSCrossRefGoogle Scholar
  77. Walter R, Zurita Heras J (2007) Probing clumpy stellar winds with a neutron star. Astron Astrophys 476:335–340. https://doi.org/10.1051/0004-6361:20078353. ArXiv:0710.2542ADSCrossRefGoogle Scholar
  78. Wasiutynski J (1946) Studies in hydrodynamics and structure of stars and planets. Astrophys Norvegica 4:1–497ADSMathSciNetzbMATHGoogle Scholar
  79. Weymann R (1965) Diffusion approximation for a photon gas interacting with a plasma via the compton effect. Phys Fluids 8:2112–2114. https://doi.org/10.1063/1.1761165 ADSCrossRefGoogle Scholar
  80. Zeldovich YB (1981) On the friction of fluids between rotating cylinders. Proc R Soc Lond Ser A 374:299–312.  https://doi.org/10.1098/rspa.1981.0024 ADSMathSciNetCrossRefGoogle Scholar
  81. Zelenyi LM, Milovanov AV (2004) REVIEWS OF TOPICAL PROBLEMS: fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics. Phys Usp 47:1. https://doi.org/10.1070/PU2004v047n08ABEH001705 ADSCrossRefGoogle Scholar
  82. Zweibel EG, Yamada M (2009) Magnetic reconnection in astrophysical and laboratory plasmas. Annu Rev Astron Astrophys 47:291–332.  https://doi.org/10.1146/annurev-astro-082708-101726 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nikolay Shakura
    • 1
    • 2
  • Konstantin Postnov
    • 1
    • 3
  • Alexandra Kochetkova
    • 1
  • Linnea Hjalmarsdotter
    • 1
  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia
  2. 2.Kazan Federal UniversityKazanRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations