Advertisement

Relativistic Standard Accretion Disc

  • Viacheslav ZhuravlevEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 454)

Abstract

In this chapter we present a model of a standard accretion disc around a rotating black hole taking general relativity effects into full account. This model was first described in the paper by Novikov and Thorne (Black holes (Les Astres Occlus). Gordon and Breach, New York, 1973) and has since then been used in many studies to obtain convincing evidence of the existence of black holes, in both stellar binary systems and active galactic nuclei. It remains topical since a full account of the general relativistic properties of the motion of matter in the disc, and the generation of disc emission, allows the position of the inner disc radius and hence the black hole spin to be inferred from observations. In addition, the standard accretion disc is the basis for more complicated theories of warped (twisted) accretion discs, which are formed when the accreting matter moves outside the equatorial plane of a rotating black hole.

References

  1. Abramowicz MA, Czerny B, Lasota JP, Szuszkiewicz E (1988) Astrophys J 332:646ADSCrossRefGoogle Scholar
  2. Agol E, Krolik J, Turner NJ, M SJ (2001) Astrophys J 558:543Google Scholar
  3. Bisnovatyi-Kogan GS, Blinnikov SI (1977) Astrophys J 59:111ADSGoogle Scholar
  4. Chandrasekhar S (1992) The mathematical theory of black holes. Clarendon Press, OxfordzbMATHGoogle Scholar
  5. Cunningham CT (1975) Astrophys J 202:788ADSCrossRefGoogle Scholar
  6. Fujita M, Okuda T (1998) Publ Astron Soc Jpn 50:639ADSCrossRefGoogle Scholar
  7. Gierlinski M, Maciolek-Niedzwiecki A, Ebisawa K (2001) Mon Not R Astron Soc 325:1253ADSCrossRefGoogle Scholar
  8. Hobson MP, Efstathiou GP, Lasenby AN (2006) General relativity: an introduction for physicists. Cambridge University Press, Cambridge. https://doi.org/10.2277/0521829518
  9. Klepnev AS, Bisnovatyi-Kogan GS (2010) Astrophysics 53:409ADSCrossRefGoogle Scholar
  10. Korn GA, Korn TM (2000) Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Dover Publications, MineolazbMATHGoogle Scholar
  11. Li LX, Zimmerman ER, Narayan R, McClintock JE (2005) Astrophys J Suppl Ser 157:335ADSCrossRefGoogle Scholar
  12. Mihalas D, Weibel Mihalas B (1984) Foundations of radiation hydrodynamics. Oxford University Press, New YorkzbMATHGoogle Scholar
  13. Misner CW, Thorne KS, Wheeler JA (1973) Gravitation, vol 2. W.H. Freeman, San FranciscoGoogle Scholar
  14. Novikov ID, Thorne KS (1973) Astrophysics of black holes. In: Dewitt C, Dewitt BS (eds) Black holes (Les Astres Occlus). Gordon and Breach, New York, pp 343–450Google Scholar
  15. Paczynski B, Bisnovatyi-Kogan G (1981) Acta Astronomica 31:283ADSGoogle Scholar
  16. Page DN, Thorne KS (1974) Astrophys J 191:499ADSCrossRefGoogle Scholar
  17. Riffert H, Herold H (1995) Astrophys J 450:508ADSCrossRefGoogle Scholar
  18. Shakura NI (1972) Astron Zh 49:921ADSGoogle Scholar
  19. Shakura NI, Sunyaev RA (1973) Astrophys J 24:337ADSGoogle Scholar
  20. Shakura NI, Sunyaev RA (1976) Mon Not R Astron Soc 175:613ADSCrossRefGoogle Scholar
  21. Zhuravlev VV, Ivanov PB (2011) Mon Not R Astron Soc 415:2122ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations