Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis

  • Alexander RakhlinEmail author
  • Alexey Shvets
  • Vladimir Iglovikov
  • Alexandr A. Kalinin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10882)


Breast cancer is one of the main causes of cancer death worldwide. Early diagnostics significantly increases the chances of correct treatment and survival, but this process is tedious and often leads to disagreement between pathologists. Computer-aided diagnosis systems show potential for improving the diagnostic accuracy. In this work, we develop the computational approach based on deep convolution neural networks for breast cancer histology image classification. Hematoxylin and eosin stained breast histology microscopy image dataset is provided as a part of the ICIAR 2018 Grand Challenge on Breast Cancer Histology Images. Our approach utilizes several deep neural network architectures and gradient boosted trees classifier. For 4-class classification task, we report 87.2% accuracy. For 2-class classification task to detect carcinomas we report 93.8% accuracy, AUC 97.3%, and sensitivity/specificity 96.5/88.0% at the high-sensitivity operating point. To our knowledge, this approach outperforms other common methods in automated histopathological image classification. The source code for our approach is made publicly available at


Medical imaging Computer-aided diagnosis (CAD) Computer vision Image recognition Deep learning 



The authors thank the Open Data Science community [18] for useful suggestions and other help aiding the development of this work.


  1. 1.
    Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PloS One 12(6), e0177544 (2017)CrossRefGoogle Scholar
  2. 2.
    Bejnordi, B.E., Veta, M., van Diest, P.J., van Ginneken, B., Karssemeijer, N., Litjens, G., van der Laak, J.A., Hermsen, M., Manson, Q.F., Balkenhol, M., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)CrossRefGoogle Scholar
  3. 3.
    Boureau, Y.L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 111–118 (2010)Google Scholar
  4. 4.
    Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M., Xie, W., Rosen, G.L., Lengerich, B.J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A.E., Shrikumar, A., Xu, J., Cofer, E.M., Lavender, C.A., Turaga, S.C., Alexandari, A.M., Lu, Z., Harris, D.J., DeCaprio, D., Qi, Y., Kundaje, A., Peng, Y., Wiley, L.K., Segler, M.H.S., Boca, S.M., Swamidass, S.J., Huang, A., Gitter, A., Greene, C.S.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018)CrossRefGoogle Scholar
  5. 5.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)Google Scholar
  6. 6.
    Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A.N., Nelson, H.D., Pepe, M.S., Allison, K.H., Schnitt, S.J., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11), 1122–1132 (2015)CrossRefGoogle Scholar
  7. 7.
    Elston, C.W., Ellis, I.O.: Pathological prognostic factors in breast cancer. i. the value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5), 403–410 (1991)CrossRefGoogle Scholar
  8. 8.
    Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)CrossRefGoogle Scholar
  9. 9.
    ICIAR 2018 Grand Challenge on Breast Cancer Histology Images. Accessed 31 Jan 2018
  10. 10.
    Iglovikov, V., Mushinskiy, S., Osin, V.: Satellite imagery feature detection using deep convolutional neural network: a kaggle competition. arXiv preprint arXiv:1706.06169 (2017)
  11. 11.
    Iglovikov, V., Rakhlin, A., Kalinin, A., Shvets, A.: Pediatric bone age assessment using deep convolutional neural networks (2017). arXiv preprint arXiv:1712.05053
  12. 12.
    Iglovikov, V., Shvets, A.: Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation (2018). arXiv preprint arXiv:1801.05746
  13. 13.
    Kalinin, A.A., Allyn-Feuer, A., Ade, A., Fon, G.V., Meixner, W., Dilworth, D., Jeffrey, R., Higgins, G.A., Zheng, G., Creekmore, A., et al.: 3d cell nuclear morphology: microscopy imaging dataset and voxel-based morphometry classification results. bioRxiv, 208207 (2017)Google Scholar
  14. 14.
    Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: Lightgbm: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp. 3149–3157 (2017)Google Scholar
  15. 15.
    Macenko, M., Niethammer, M., Marron, J., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 1107–1110. IEEE (2009)Google Scholar
  16. 16.
    Meyer, J.S., Alvarez, C., Milikowski, C., Olson, N., Russo, I., Russo, J., Glass, A., Zehnbauer, B.A., Lister, K., Parwaresch, R.: Breast carcinoma malignancy grading by bloom-richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index. Mod. Pathol. 18(8), 1067 (2005)CrossRefGoogle Scholar
  17. 17.
    Natekin, A., Knoll, A.: Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)CrossRefGoogle Scholar
  18. 18.
    Open Data Science (ODS). Accessed 31 Jan 2018
  19. 19.
    Rakhlin, A.: Diabetic retinopathy detection through integration of deep learning classification framework. bioRxiv, 225508 (2017)Google Scholar
  20. 20.
    Robertson, S., Azizpour, H., Smith, K., Hartman, J.: Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Transl. Res. 194, 19–35 (2017)CrossRefGoogle Scholar
  21. 21.
    Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)Google Scholar
  22. 22.
    Shvets, A., Rakhlin, A., Kalinin, A.A., Iglovikov, V.: Automatic instrument segmentation in robot-assisted surgery using deep learning. arXiv preprint arXiv:1803.01207 (2018)
  23. 23.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018). Scholar
  24. 24.
    Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)Google Scholar
  25. 25.
    Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)Google Scholar
  26. 26.
    Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P., Saarakkala, S.: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci. Rep. 8, 1727 (2018)CrossRefGoogle Scholar
  27. 27.
    Xu, Y., Jia, Z., Ai, Y., Zhang, F., Lai, M., Eric, I., Chang, C.: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 947–951. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Rakhlin
    • 1
    Email author
  • Alexey Shvets
    • 2
  • Vladimir Iglovikov
    • 3
  • Alexandr A. Kalinin
    • 4
  1. 1.Neuromation OUTallinnEstonia
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Lyft Inc.San FranciscoUSA
  4. 4.University of MichiganAnn ArborUSA

Personalised recommendations