Deep Convolutional Artery/Vein Classification of Retinal Vessels

  • Maria Ines Meyer
  • Adrian Galdran
  • Pedro Costa
  • Ana Maria Mendonça
  • Aurélio Campilho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10882)


The classification of retinal vessels into arteries and veins in eye fundus images is a relevant task for the automatic assessment of vascular changes. This paper presents a new approach to solve this problem by means of a Fully-Connected Convolutional Neural Network that is specifically adapted for artery/vein classification. For this, a loss function that focuses only on pixels belonging to the retinal vessel tree is built. The relevance of providing the model with different chromatic components of the source images is also analyzed. The performance of the proposed method is evaluated on the RITE dataset of retinal images, achieving promising results, with an accuracy of \(96\%\) on large caliber vessels, and an overall accuracy of \(84\%\).



This work is funded by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and the European Regional Development Fund (ERDF), within the project “NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and Analytics/NORTE-01-0145-FEDER-000016”.


  1. 1.
    Costa, P., Campilho, A.: Convolutional bag of words for diabetic retinopathy detection from eye fundus images. IPSJ Trans. Comput. Vis. Appl. 9(1), 10 (2017)CrossRefGoogle Scholar
  2. 2.
    Dashtbozorg, B., Mendonça, A.M., Campilho, A.: An automatic method for the estimation of arteriolar-to-venular ratio in retinal images. In: IEEE International Symposium on Computer-Based Medical Systems, pp. 512–513, June 2013Google Scholar
  3. 3.
    Dashtbozorg, B., Mendonça, A.M., Campilho, A.: Optic disc segmentation using the sliding band filter. Comput. Biol. Med. 56, 1–12 (2015)CrossRefGoogle Scholar
  4. 4.
    Dashtbozorg, B., Mendonca, A.M., Campilho, A.: An automatic graph-based approach for artery/vein classification in retinal images. IEEE Trans. Image Process. 23(3), 1073–1083 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Estrada, R., Allingham, M.J., Mettu, P.S., Cousins, S.W., Tomasi, C., Farsiu, S.: Retinal artery-vein classification via topology estimation. IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015)CrossRefGoogle Scholar
  6. 6.
    Hu, Q., Abràmoff, M.D., Garvin, M.K.: Automated separation of binary overlapping trees in low-contrast color retinal images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 436–443. Springer, Heidelberg (2013). Scholar
  7. 7.
    Ikram, M.K., de Jong, F.J., Vingerling, J.R., Witteman, J.C.M., Hofman, A., Breteler, M.M.B., de Jong, P.T.V.M.: Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The rotterdam study. Invest. Ophthalmol. Vis. Sci. 45(7), 2129–2134 (2004)CrossRefGoogle Scholar
  8. 8.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–13 (2014)Google Scholar
  9. 9.
    Kondermann, C., Kondermann, D., Yan, M.: Blood vessel classification into arteries and veins in retinal images. In: Image Processing, p. 651247 (2007)Google Scholar
  10. 10.
    Meyer, M.I., Costa, P., Galdran, A., Mendonça, A.M., Campilho, A.: A deep neural network for vessel segmentation of scanning laser ophthalmoscopy images. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 507–515. Springer, Cham (2017). Scholar
  11. 11.
    Nguyen, T.T., Wong, T.Y.: Retinal vascular changes and diabetic retinopathy. Curr. Diabetes Rep. 9(4), 277–283 (2009)CrossRefGoogle Scholar
  12. 12.
    Niemeijer, M., van Ginneken, B., Abramoff, M.D.: Automatic classification of retinal vessels into arteries and veins. In: SPIE medical imaging. International Society for Optics and Photonics, November 2016, vol. 7260, pp. 1–8 (2009)Google Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  14. 14.
    Rothaus, K., Jiang, X., Rhiem, P.: Separation of the retinal vascular graph in arteries and veins based upon structural knowledge. Image Vis. Comput. 27(7), 864–875 (2009)CrossRefGoogle Scholar
  15. 15.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Ginneken, B.V.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  16. 16.
    Welikala, R., Foster, P., Whincup, P., Rudnicka, A., Owen, C., Strachan, D., Barman, S.: Automated arteriole and venule classification using deep learning for retinal images from the UK biobank cohort. Comput. Biol. Med. 90, 23–32 (2017)CrossRefGoogle Scholar
  17. 17.
    Yu, H., Barriga, S., Agurto, C., Nemeth, S., Bauman, W., Soliz, P.: Automated Retinal Vessel Type Classification in Color Fundus Images, vol. 8670 (2013)Google Scholar
  18. 18.
    Zamperini, A., Giachetti, A., Trucco, E., Chin, K.S.: Effective features for artery-vein classification in digital fundus images. In: Proceedings - IEEE Symposium on Computer-Based Medical Systems (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maria Ines Meyer
    • 1
  • Adrian Galdran
    • 1
  • Pedro Costa
    • 1
  • Ana Maria Mendonça
    • 1
    • 2
  • Aurélio Campilho
    • 1
    • 2
  1. 1.INESC-TEC - Institute for Systems and Computer Engineering, Technology and SciencePortoPortugal
  2. 2.Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations