Advertisement

Interactive Photo Liveness for Presentation Attacks Detection

  • Galina Lavrentyeva
  • Oleg Kudashev
  • Aleksandr Melnikov
  • Maria De Marsico
  • Yuri Matveev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10882)

Abstract

This paper presents an interactive liveness detection approach against presentation attacks. It aims to minimize the impact on the user, who is only asked to produce single head movements. The described approach combines two methods: (1) single-photo liveness estimation based on CNN implementation, and (2) interactive liveness estimation based on head movements detected from two video frames extracted before and during the movement. The resulting system is designed to work on smartphones and by web-cameras. An appropriate database was collected for experiments. These achieved EER of less than 5% for paper spoofing attacks, less than 4% for monitor and 0.6% for tablet, while the Failure to Capture (FTC) was less than 3% for the most user-friendly scenario.

Keywords

Spoofing Anti-spoofing Liveness detection 

Notes

Acknowledgements

This work was financially supported by the Ministry of Education and Science of the Russian Federation, Contract 14.578.21.0189 (ID RFMEFI57816X0189).

References

  1. 1.
    De Marsico, M., Marchionni, L., Novelli, A., Oertel, M.: FATCHA: the CAPTCHA Are You! In: 11th Biannual Conference on Italian SIGCHI Chapter, pp. 118–125 (2015)Google Scholar
  2. 2.
    Nixon, K.A., Aimale, V., Rowe, R.K.: Spoof detection schemes. In: Jain, A.K., Flynn, P., Ross, A.A. (eds.) Handbook of Biometrics, pp. 403–423. Springer, Boston (2008).  https://doi.org/10.1007/978-0-387-71041-9_20CrossRefGoogle Scholar
  3. 3.
    Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15567-3_37CrossRefGoogle Scholar
  4. 4.
    Hadid, A.: The local binary pattern approach and its applications to face analysis. In: Image Processing Theory, Tools and Application, pp. 1–9 (2008)Google Scholar
  5. 5.
    Mei, L., Yang, D., Feng, Z., Lai, J.: WLD-TOP based algorithm against face spoofing attacks. In: 10th Chinese Conference on Biometric Recognition, pp. 135–142 (2015)CrossRefGoogle Scholar
  6. 6.
    Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition based on optical flow field. In: International Conference on Image Analysis and Signal Processing (2009)Google Scholar
  7. 7.
    Pan, G., Sun, L., Wu, Z., Lao, S.: Eyeblink-based antispoofing in face recognition from a generic Webcamera. In: International Conference on 11th Computer Vision (2007)Google Scholar
  8. 8.
    Frischholz, R., Werner, A.: Avoiding replay-attacks in a face recognition system using head-pose estimation. In: Analysis and Modeling of Faces and Gestures, pp. 234–235 (2003)Google Scholar
  9. 9.
    Kollreider, K., Fronthaler, H., Faraj, M., Bigun, J.: Real time face detection and motion analysis with application in liveness assessment. Trans. Inf. Forensics Secur. 2, 548–558 (2007)CrossRefGoogle Scholar
  10. 10.
    Melnikov, A., Akhunzyanov, R., Kudashev, O., Luckyanets, E.: Audiovisual liveness detection. In: Murino, V., Puppo, E. (eds.) ICIAP 2015, Part II. LNCS, vol. 9280, pp. 643–652. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23234-8_59CrossRefGoogle Scholar
  11. 11.
    Volkova, S.S., Matveev, Y.N.: Convolutional neural networks for face anti-spoofing. Sci. Tech. J. Inf. Technol. Mech. Opt. 18(1), 702–710 (2018)Google Scholar
  12. 12.
    Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: 5th IAPR International Conference on Biometrics (2012)Google Scholar
  13. 13.
    Cristinacce, D., Cootes, T.F.: Feature detection and tracking with constrained local models. In: BMVC, vol. 2, p. 6 (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Galina Lavrentyeva
    • 1
  • Oleg Kudashev
    • 2
  • Aleksandr Melnikov
    • 1
  • Maria De Marsico
    • 3
  • Yuri Matveev
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.STC-innovations Ltd.St. PetersburgRussia
  3. 3.Sapienza University of RomeRomeItaly

Personalised recommendations