Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems

  • Stefan Schupp
  • Erika ÁbrahámEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10886)


We consider a method for the bounded safety analysis of hybrid systems, whose continuous behaviour is intertwined with discrete execution steps. The method computes a tree of state sets, which together over-approximate reachability by bounded-length executions. If none of the state sets intersects with a given set of unsafe states then we have proven bounded safety. Otherwise, we iteratively repeat parts of the computations with locally refined search parameters, in order to reduce the over-approximation error.

In this paper we present a parallelization technique for the above method. We identify independent computations that can be carried out by different threads/processes concurrently, and examine how to achieve work-balance between the threads at low communication cost. Furthermore, we discuss how to assure mutually exclusive node access during refinement computations, without high synchronization costs. We evaluate our proposed solutions experimentally on some benchmarks.


Over-approximation Error Global Queue Task Queue Local Queue Hybrid Automata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using reachability analysis. IEEE Trans. Robot. 30(4), 903–918 (2014)CrossRefGoogle Scholar
  2. 2.
    Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). Scholar
  3. 3.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). Scholar
  4. 4.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). Scholar
  5. 5.
    Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in space-time. In: Proceedings of HSCC 2013, pp. 203–212. ACM (2013)Google Scholar
  6. 6.
    Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podelski, A., Wehrle, M.: Guided search for hybrid systems based on coarse-grained space abstractions. STTT 18(4), 449–467 (2016)CrossRefGoogle Scholar
  8. 8.
    Schupp, S., Ábrahám, E.: Efficient dynamic error reduction for hybrid systems reachability analysis. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 287–302. Springer, Cham (2018). Accessible for reviewers under Scholar
  9. 9.
    Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 401–420. Springer, Cham (2017). Scholar
  10. 10.
    Schupp, S., Nellen, J., Ábrahám, E.: Divide and conquer: variable set separation in hybrid systems reachability analysis. In: Proceedings of QAPL 2017. EPTCS, vol. 250, pp. 1–14. Open Publishing Association (2017)Google Scholar
  11. 11.
    Bogomolov, S., Forets, M., Frehse, G., Podelski, A., Schilling, C., Viry, F.: Reach set approximation through decomposition with low-dimensional sets and high-dimensional matrices. CoRR abs/1801.09526 (2018)Google Scholar
  12. 12.
    Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In: Proceedings of RTSS 2016, pp. 13–24. IEEE Computer Society Press (2016)Google Scholar
  13. 13.
    Ray, R., Gurung, A.: Parallel state space exploration of linear systems with inputs using XSpeed. In: Proceedings of HSCC 2015, pp. 285–286. ACM (2015)Google Scholar
  14. 14.
    Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of LICS 1996, pp. 278–292. IEEE Computer Society Press (1996)Google Scholar
  15. 15.
    Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of state set representations for hybrid systems reachability analysis. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer, Cham (2017). Scholar
  16. 16.
    Schupp, S., Ábrahám, E., Chen, X., Ben Makhlouf, I., Frehse, G., Sankaranarayanan, S., Kowalewski, S.: Current challenges in the verification of hybrid systems. In: Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 8–24. Springer, Cham (2015). Scholar
  17. 17.
    Frehse, G., Ray, R.: Design principles for an extendable verification tool for hybrid systems. In: Proceedings of ADHS 2009, pp. 244–249. IFAC-PapersOnLine (2009)Google Scholar
  18. 18.
    Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004). Scholar
  19. 19.
    Bu, L., Ray, R., Schupp, S.: ARCH-COMP17 category report: bounded model checking of hybrid systems with piecewise constant dynamics. In: Proceedings of ARCH 2017. EPiC Series in Computing, vol. 48, pp. 134–142. EasyChair (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Theory of Hybrid SystemsRWTH Aachen UniversityAachenGermany

Personalised recommendations