Systems Approaches to Map In Vivo RNA–Protein Interactions in Arabidopsis thaliana

  • Martin Lewinski
  • Tino KösterEmail author
Part of the RNA Technologies book series (RNATECHN)


Proteins that specifically interact with mRNAs orchestrate mRNA processing steps all the way from transcription to decay. Thus, these RNA-binding proteins represent an important control mechanism to double check which proportion of nascent pre-mRNAs is ultimately available for translation into distinct proteins. Here, we discuss recent progress to obtain a systems-level understanding of in vivo RNA–protein interactions in the reference plant Arabidopsis thaliana using protein-centric and RNA-centric methods as well as combined protein binding site and structure probing.


CLIP iCLIP mRNA interactome RNA-binding protein RNA immunoprecipitation RNA–protein interaction 



The work in Tino Köster’s lab is supported by the DFG through grant KO 5364/1-1. Martin Lewinski is supported by the DFG through grant STA653/6-1 to Dorothee Staiger.


  1. Ali GS, Palusa SG, Golovkin M et al (2007) Regulation of plant developmental processes by a novel splicing factor. PLoS One 2:e471PubMedCrossRefPubMedCentralGoogle Scholar
  2. Badolato J, Gardiner E, Morrison N et al (1995) Identification and characterisation of a novel human RNA-binding protein. Gene 166:323–327PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442PubMedCrossRefPubMedCentralGoogle Scholar
  5. Beckmann BM, Horos R, Fischer B et al (2015) The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat Commun 6:10127PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boniecki MJ, Lach G, Dawson WK et al (2016) SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res 44:e63–e63PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bunnik EM, Batugedara G, Saraf A et al (2016) The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. Genome Biol 17:147PubMedCrossRefPubMedCentralGoogle Scholar
  8. Carvalho RF, Carvalho SD, Duque P (2010) The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol 154:772–783PubMedCrossRefPubMedCentralGoogle Scholar
  9. Carvalho RF, Szakonyi D, Simpson CG et al (2016) The Arabidopsis SR45 splicing factor, a negative regulator of sugar signaling, modulates SNF1-related protein kinase 1 stability. Plant Cell 28:1910–1925PubMedCrossRefPubMedCentralGoogle Scholar
  10. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136:604–609PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105:9970–9975PubMedCrossRefPubMedCentralGoogle Scholar
  13. Ferrari R, Tadini L, Moratti F et al (2017) CRP1 Protein: (dis)similarities between Arabidopsis thaliana and Zea mays. Front Plant Sci 8:163PubMedCrossRefPubMedCentralGoogle Scholar
  14. Foley SW, Gosai SJ, Wang D et al (2017) A global view of RNA-protein interactions identifies post-transcriptional regulators of root hair cell fate. Dev Cell 41:204–220PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fu ZQ, Guo M, Jeong BR et al (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288PubMedCrossRefPubMedCentralGoogle Scholar
  16. Galgano A, Gerber AP (2011) RNA-binding protein immunopurification-microarray (RIP-Chip) analysis to profile localized RNAs. Methods Mol Biol 714:369–385PubMedCrossRefPubMedCentralGoogle Scholar
  17. Golovkin M, Reddy AS (1999) An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein. J Biol Chem 274:36428–36438PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gosai S, Foley Shawn W, Wang D et al (2015) Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol Cell 57:829–845CrossRefGoogle Scholar
  19. Goyal M, Banerjee C, Nag S et al (2016) The Alba protein family: structure and function. Biochim Biophys Acta Proteins Proteomics 1864:570–583CrossRefGoogle Scholar
  20. Guerreiro A, Deligianni E, Santos J et al (2014) Genome-wide RIP-chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biol 15:493PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hackmann C, Korneli C, Kutyniok M et al (2014) Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Plant Cell Environ 37:696–706PubMedCrossRefPubMedCentralGoogle Scholar
  22. Heintzen C, Melzer S, Fischer R et al (1994) A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J 5:799–813PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hornyik C, Terzi LC, Simpson GG (2010) The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev Cell 18:203–213PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487PubMedCrossRefPubMedCentralGoogle Scholar
  25. Jeong B, Lin Y, Joe A et al (2011) Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. J Biol Chem 286:43272–43281PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jones MA, Williams BA, McNicol J et al (2012) Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 causes circadian clock defects. Plant Cell 24:4907–4916PubMedCrossRefPubMedCentralGoogle Scholar
  27. Juntawong P, Sorenson R, Bailey-Serres J (2013) Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana. Plant J 74:1016–1028PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kalyna M, Lopato S, Barta A (2003) Ectopic expression of at RSZ33 reveals its function in splicing and causes pleiotropic changes in development. Mol Biol Cell 14:3565–3577PubMedCrossRefPubMedCentralGoogle Scholar
  29. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kim JS, Park SJ, Kwak KJ et al (2007a) Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res 35:506–516PubMedCrossRefGoogle Scholar
  31. Kim JY, Park SJ, Jang B et al (2007b) Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J 50:439–451PubMedCrossRefGoogle Scholar
  32. Kim YO, Pan S, Jung CH et al (2007c) A zinc finger-containing glycine-rich RNA-binding protein, at RZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol 48:1170–1181PubMedCrossRefGoogle Scholar
  33. Kim JS, Kim KA, Oh TR et al (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49:1563–1571PubMedCrossRefGoogle Scholar
  34. Kim JY, Kim WY, Kwak KJ et al (2010) Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J Exp Bot 61:2317–2325PubMedCrossRefPubMedCentralGoogle Scholar
  35. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915PubMedCrossRefPubMedCentralGoogle Scholar
  36. Köster T, Staiger D (2014) RNA-binding protein Immunoprecipitation from whole-cell extracts. Methods Mol Biol 1062:679–695PubMedCrossRefGoogle Scholar
  37. Köster T, Meyer K, Weinholdt C et al (2014) Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 42:9925–9936PubMedCrossRefPubMedCentralGoogle Scholar
  38. Köster T, Marondedze C, Meyer K et al (2017) RNA-binding proteins revisited: the emerging Arabidopsis mRNA interactome. Trends Plant Sci 22:512–526PubMedCrossRefGoogle Scholar
  39. Krause K, Herrmann U, Fuß J et al (2009) Whirly proteins as communicators between plant organelles and the nucleus? Endocytobiosis Cell Res 19:51–62Google Scholar
  40. Kupsch C, Ruwe H, Gusewski S et al (2012) Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell 24:4266–4280PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kwon SC, Yi H, Eichelbaum K et al (2013) The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol 20:1122–1130PubMedCrossRefGoogle Scholar
  42. Lewinski M, Hallmann A, Staiger D (2016) Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Mol Gen Genomics 291:763–773CrossRefGoogle Scholar
  43. Li D, Zhang H, Hong Y et al (2014) Genome-wide identification, biochemical characterization, and expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis and Rice. Plant Mol Biol Report 32:1169–1186CrossRefGoogle Scholar
  44. Liao Y, Castello A, Fischer B et al (2016) The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep 16:1456–1469PubMedCrossRefPubMedCentralGoogle Scholar
  45. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469PubMedCrossRefPubMedCentralGoogle Scholar
  46. Löhr B, Streitner C, Steffen A et al (2014) A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis. Mol Biol Rep 41:439–445PubMedCrossRefGoogle Scholar
  47. Lopato S, Kalyna M, Dorner S et al (1999) atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev 13:987–1001PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lorkovic ZJ, Wieczorek Kirk DA, Klahre U et al (2000) RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells. RNA 6:1610–1624PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366PubMedCrossRefPubMedCentralGoogle Scholar
  50. Lueong S, Merce C, Fischer B et al (2016) Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol Microbiol 100:457–471PubMedCrossRefGoogle Scholar
  51. Lyons R, Iwase A, Gänsewig T et al (2013) The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Sci Rep 3:2866PubMedCrossRefPubMedCentralGoogle Scholar
  52. Macknight R, Bancroft I, Page T et al (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745PubMedCrossRefGoogle Scholar
  53. Marondedze C, Thomas L, Serrano NL et al (2016) The RNA-binding protein repertoire of Arabidopsis thaliana. Sci Rep 6:29766Google Scholar
  54. Matia-Gonzalez AM, Laing EE, Gerber AP (2015) Conserved mRNA-binding proteomes in eukaryotic organisms. Nat Struct Mol Biol 22:1027–1033PubMedCrossRefPubMedCentralGoogle Scholar
  55. Maticzka D, Lange S, Costa F et al (2014) GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol 15:R17PubMedCrossRefPubMedCentralGoogle Scholar
  56. Meyer K, Köster T, Nolte C et al (2017) Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biol 18:204PubMedCrossRefPubMedCentralGoogle Scholar
  57. Mitchell SF, Jain S, She M et al (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20:127–133PubMedCrossRefPubMedCentralGoogle Scholar
  58. Müller-McNicoll M, Botti V, de Jesus Domingues AM et al (2016) SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 30:553–566PubMedCrossRefPubMedCentralGoogle Scholar
  59. Nandan D, Thomas SA, Nguyen A et al (2017) Comprehensive identification of mRNA-binding proteins of Leishmania donovani by interactome capture. PLoS One 12:e0170068PubMedCrossRefPubMedCentralGoogle Scholar
  60. Nicaise V, Joe A, Jeong B et al (2013) Pseudomonas HopU1 affects interaction of plant immune receptor mRNAs to the RNA-binding protein GRP7. EMBO J 32:701–712PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ohta M, Sugita M, Sugiura M (1995) Three types of nuclear genes encoding chloroplast RNA-binding proteins (cp29, cp31 and cp33) are present in Arabidopsis thaliana: presence of cp31 in chloroplasts and its homologue in nuclei/cytoplasms. Plant Mol Biol 27:529–539PubMedCrossRefPubMedCentralGoogle Scholar
  62. Park SJ, Kwak KJ, Oh TR et al (2009) Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 50:869–878PubMedCrossRefPubMedCentralGoogle Scholar
  63. Perez-Santángelo S, Mancini E, Francey LJ et al (2014) Role for LSM genes in the regulation of circadian rhythms. Proc Natl Acad Sci USA 111:15166–15171PubMedCrossRefPubMedCentralGoogle Scholar
  64. Prikryl J, Watkins KP, Friso G et al (2008) A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Res 36:5152–5165PubMedCrossRefPubMedCentralGoogle Scholar
  65. Qi Y, Tsuda K, Joe A et al (2010) A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis. Mol Plant Microbe Interact 23:1573–1583PubMedCrossRefPubMedCentralGoogle Scholar
  66. Reichel M, Liao Y, Rettel M et al (2016) In planta determination of the mRNA-binding proteome of Arabidopsis etiolated seedlings. Plant Cell 28:2435–2452PubMedCrossRefPubMedCentralGoogle Scholar
  67. Ren G, Xie M, Dou Y et al (2012) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA 109:12817–12821PubMedCrossRefGoogle Scholar
  68. Riera M, Redko Y, Leung J (2006) Arabidopsis RNA-binding protein UBA2a relocalizes into nuclear speckles in response to abscisic acid. FEBS Lett 580:4160–4165PubMedCrossRefGoogle Scholar
  69. Ripoll JJ, Ferrandiz C, Martinez-Laborda A et al (2006) PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev Biol 289:346–359PubMedCrossRefGoogle Scholar
  70. Rossbach O, Hung L-H, Khrameeva E et al (2014) Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biol 11:146–155PubMedCrossRefPubMedCentralGoogle Scholar
  71. Rudolf F, Wehrle F, Staiger D (2004) Slave to the rhythm. Biochemist 26:11–13Google Scholar
  72. Rühl C, Stauffer E, Kahles A et al (2012) Polypyrimidine tract binding protein homologs from Arabidopsis are key regulators of alternative splicing with implications in fundamental developmental processes. Plant Cell 24:4360–4375PubMedCrossRefPubMedCentralGoogle Scholar
  73. Ruwe H, Kupsch C, Teubner M et al (2011) The RNA-recognition motif in chloroplasts. J Plant Physiol 168:1361–1371PubMedCrossRefPubMedCentralGoogle Scholar
  74. Schmal C, Reimann P, Staiger D (2013) A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana. PLoS Comput Biol 9:e1002986PubMedCrossRefPubMedCentralGoogle Scholar
  75. Schmidt F, Marnef A, Cheung M-K et al (2010) A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol Biol Rep 37:839–845PubMedCrossRefPubMedCentralGoogle Scholar
  76. Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670PubMedCrossRefPubMedCentralGoogle Scholar
  77. Silverman IM, Li F, Gregory BD (2013) Genomic era analyses of RNA secondary structure and RNA-binding proteins reveal their significance to post-transcriptional regulation in plants. Plant Sci 205-206:55–62PubMedCrossRefPubMedCentralGoogle Scholar
  78. Simpson GG, Dijkwel PP, Quesada V et al (2003) FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777–787PubMedCrossRefPubMedCentralGoogle Scholar
  79. Sommerville J (1999) Activities of cold-shock domain proteins in translation control. BioEssays 21:319–325PubMedCrossRefPubMedCentralGoogle Scholar
  80. Sorenson R, Bailey-Serres J (2014) Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc Natl Acad Sci USA 111:2373–2378PubMedCrossRefPubMedCentralGoogle Scholar
  81. Staiger D (2001) RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philos Trans R Soc Lond Ser B Biol Sci 356:1755–1759CrossRefGoogle Scholar
  82. Staiger D (2015) Shaping the Arabidopsis transcriptome through alternative splicing. Adv Bot 2015:13Google Scholar
  83. Staiger D, Zecca L, Wieczorek Kirk DA et al (2003) The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J 33:361–371PubMedCrossRefPubMedCentralGoogle Scholar
  84. Stauffer E, Westermann A, Wagner G et al (2010) Polypyrimidine tract-binding protein homologues from Arabidopsis underlie regulatory circuits based on alternative splicing and downstream control. Plant J 64:243–255PubMedCrossRefPubMedCentralGoogle Scholar
  85. Streitner C, Danisman S, Wehrle F et al (2008) The small glycine-rich RNA-binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J 56:239–250PubMedCrossRefPubMedCentralGoogle Scholar
  86. Streitner C, Köster T, Simpson CG et al (2012) An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with target transcripts in Arabidopsis thaliana. Nucleic Acids Res 40:11240–11255PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sysoev VO, Fischer B, Frese CK et al (2016) Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat Commun 7:12128PubMedCrossRefPubMedCentralGoogle Scholar
  88. Tenenbaum SA, Carson CC, Lager PJ et al (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 97:14085–14090PubMedCrossRefPubMedCentralGoogle Scholar
  89. Teubner M, Fuß J, Kühn K et al (2017) The RRM protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development. Plant J 89:472–485PubMedCrossRefPubMedCentralGoogle Scholar
  90. The International Arabidopsis Informatics Consortium (2012) Taking the next step: building an Arabidopsis information portal. Plant Cell 24:2248–2256CrossRefPubMedCentralGoogle Scholar
  91. Tillich M, Hardel SL, Kupsch C et al (2009) Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proc Natl Acad Sci USA 106:6002–6007PubMedCrossRefPubMedCentralGoogle Scholar
  92. Tuszynska I, Magnus M, Jonak K et al (2015) NPDock: a web server for protein–nucleic acid docking. Nucleic Acids Res 43:W425–W430PubMedCrossRefPubMedCentralGoogle Scholar
  93. Vandivier LE, Anderson SJ, Foley SW et al (2016) The conservation and function of RNA secondary structure in plants. Annu Rev Plant Biol 67:463–488PubMedCrossRefPubMedCentralGoogle Scholar
  94. Vazquez F, Gasciolli V, Crete P et al (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351PubMedCrossRefPubMedCentralGoogle Scholar
  95. Völz R, von Lyncker L, Baumann N et al (2012) LACHESIS-dependent egg-cell signaling regulates the development of female gametophytic cells. Development 139:498–502PubMedCrossRefPubMedCentralGoogle Scholar
  96. Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wessels H-H, Imami K, Baltz AG et al (2016) The mRNA-bound proteome of the early fly embryo. Genome Res 26:1000–1009PubMedCrossRefPubMedCentralGoogle Scholar
  98. Xing D, Wang Y, Hamilton M et al (2015) Transcriptome-wide identification of RNA targets of Arabidopsis SERINE/ARGININE-RICH45 uncovers the unexpected roles of this RNA binding protein in RNA processing. Plant Cell 27:3294–3308PubMedCrossRefPubMedCentralGoogle Scholar
  99. Zhang X-N, Mount SM (2009) Two alternatively spliced isoforms of the Arabidopsis thaliana SR45 protein have distinct roles during normal plant development. Plant Physiol 150:1450–1458PubMedCrossRefPubMedCentralGoogle Scholar
  100. Zhang Y, Gu L, Hou Y et al (2015) Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Res 25:864–876PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zhang Z, Boonen K, Ferrari P et al (2016) UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts. Plant Methods 12:42PubMedCrossRefPubMedCentralGoogle Scholar
  102. Zhang X-N, Shi Y, Powers JJ et al (2017) Transcriptome analyses reveal SR45 to be a neutral splicing regulator and a suppressor of innate immunity in Arabidopsis thaliana. BMC Genomics 18:772PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RNA Biology and Molecular PhysiologyBielefeld UniversityBielefeldGermany

Personalised recommendations