Advertisement

Systems Biology of RNA-Binding Proteins in Amyotrophic Lateral Sclerosis

  • Tara Kashav
  • Vijay Kumar
Chapter
Part of the RNA Technologies book series (RNATECHN)

Abstract

Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable neurodegenerative disease. Although the precise pathogenesis of ALS remains unknown, mutations in genes encoding RNA-binding proteins (RBPs) have been known as a major culprit. RBPs are involved in almost every aspect of RNA metabolism events from synthesis to degradation. Characteristic features of RBPs in neurodegeneration include misregulation of RNA processing, mislocalization of RBPs to the cytoplasm, and unusual aggregation of RBPs. Modern advancement in technology and computational capabilities suggests an optimistic future for deconvolution of the pathological changes associated with ALS to identify the pathomechanisms of ALS. Importantly, combination of highly multidimensional omic technologies involving proteomics, microarray, and mass spectrometry with computational systems biology approaches provides a systemic methodology to reveal novel mechanisms behind ALS. In this chapter, we begin by summarizing the ALS and involvement of RBPs in ALS. Further, we provide a comprehensive overview of applications of systems biology to study ALS. We imagine that the integration of highly efficient computational tools with multiple omic analyses will help in the discovery of new therapeutic interventions in ALS.

Keywords

Amyotrophic lateral sclerosis RNA-binding proteins Systems biology Omics Therapy 

Notes

Acknowledgement

TK thanks the Department of Biotechnology, India, for providing DBT Biocare fellowship (BT/Bio-CARe/07/351/2016–2018). VK thanks the Department of Science of Technology, India, for the award of DST fast track fellowship (SB/YS/LS-161/2014).

Conflict of Interest The authors have declared that there is no conflict of interest.

References

  1. Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10:430–436PubMedCrossRefPubMedCentralGoogle Scholar
  2. Appel SH, Rowland LP (2012) Amyotrophic lateral sclerosis, frontotemporal lobar dementia, and p62: a functional convergence? Neurology 79:1526–1527PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aulas A, Vande Velde C (2015) Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci 9:423PubMedCrossRefPubMedCentralGoogle Scholar
  5. Belzil VV, Gendron TF, Petrucelli L (2013) RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci 56:406–419PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bentmann E, Haass C, Dormann D (2013) Stress granules in neurodegeneration—lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 280:4348–4370PubMedCrossRefPubMedCentralGoogle Scholar
  7. Blasco H, Corcia P, Moreau C et al (2010) 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS One 5:e13223PubMedCrossRefPubMedCentralGoogle Scholar
  8. Boillee S, Yamanaka K, Lobsiger CS et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392PubMedCrossRefPubMedCentralGoogle Scholar
  9. Boutahar N, Wierinckx A, Camdessanche JP et al (2011) Differential effect of oxidative or excitotoxic stress on the transcriptional profile of amyotrophic lateral sclerosis-linked mutant SOD1 cultured neurons. J Neurosci Res 89:1439–1450PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bucchia M, Ramirez A, Parente V et al (2015) Therapeutic development in amyotrophic lateral sclerosis. Clin Ther 37:668–680PubMedCrossRefPubMedCentralGoogle Scholar
  11. Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11:1019–1030PubMedCrossRefPubMedCentralGoogle Scholar
  12. Burrell JR, Kiernan MC, Vucic S et al (2011) Motor neuron dysfunction in frontotemporal dementia. Brain 134:2582–2594PubMedCrossRefPubMedCentralGoogle Scholar
  13. Caballero-Hernandez D, Toscano MG, Cejudo-Guillen M et al (2016) The ‘Omics’ of amyotrophic lateral sclerosis. Trends Mol Med 22:53–67PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cistaro A, Pagani M, Montuschi A et al (2014) The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. Eur J Nucl Med Mol Imaging 41:844–852PubMedCrossRefPubMedCentralGoogle Scholar
  15. Conlon EG, Lu L, Sharma A et al (2016) The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. Elife 5:e17820PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cooper-Knock J, Walsh MJ, Higginbottom A et al (2014) Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137:2040–2051PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cooper-Knock J, Bury JJ, Heath PR et al (2015) C9ORF72 GGGGCC expanded repeats produce splicing dysregulation which correlates with disease severity in amyotrophic lateral sclerosis. PLoS One 10:e0127376PubMedCrossRefPubMedCentralGoogle Scholar
  18. Coyne AN, Zaepfel BL, Zarnescu DC (2017) Failure to deliver and translate-new insights into RNA dysregulation in ALS. Front Cell Neurosci 11:243PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cwik VA, Hanstock CC, Allen PS et al (1998) Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology 50:72–77PubMedCrossRefPubMedCentralGoogle Scholar
  20. Daigle JG, Lanson NA Jr, Smith RB et al (2013) RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet 22:1193–1205PubMedCrossRefPubMedCentralGoogle Scholar
  21. DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256PubMedCrossRefPubMedCentralGoogle Scholar
  22. DeLoach A, Cozart M, Kiaei A et al (2015) A retrospective review of the progress in amyotrophic lateral sclerosis drug discovery over the last decade and a look at the latest strategies. Expert Opin Drug Discov 10:1099–1118PubMedCrossRefPubMedCentralGoogle Scholar
  23. Deng HX, Chen W, Hong ST et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dewey CM, Cenik B, Sephton CF et al (2012) TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res 1462:16–25PubMedCrossRefPubMedCentralGoogle Scholar
  25. Diaz-Beltran L, Cano C, Wall DP et al (2013) Systems biology as a comparative approach to understand complex gene expression in neurological diseases. Behav Sci (Basel) 3:253–272CrossRefGoogle Scholar
  26. Dowling P, Clynes M (2011) Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics 11:794–804PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dunkel P, Chai CL, Sperlagh B et al (2012) Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs 21:1267–1308PubMedCrossRefPubMedCentralGoogle Scholar
  28. Figueroa-Romero C, Hur J, Bender DE et al (2012) Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS One 7:e52672PubMedCrossRefPubMedCentralGoogle Scholar
  29. Freischmidt A, Wieland T, Richter B et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18:631–636PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fujioka Y, Ishigaki S, Masuda A et al (2013) FUS-regulated region- and cell-type-specific transcriptome is associated with cell selectivity in ALS/FTLD. Sci Rep 3:2388PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gendron TF, Petrucelli L (2017) Disease mechanisms of C9ORF72 repeat expansions. Cold Spring Harb Perspect Med 8:a024224CrossRefGoogle Scholar
  32. Gendron TF, Belzil VV, Zhang YJ et al (2014) Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol 127:359–376PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gomes C, Escrevente C, Costa J (2010) Mutant superoxide dismutase 1 overexpression in NSC-34 cells: effect of trehalose on aggregation, TDP-43 localization and levels of co-expressed glycoproteins. Neurosci Lett 475:145–149PubMedCrossRefGoogle Scholar
  34. Goyal NA, Mozaffar T (2014) Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin Investig Drugs 23:1541–1551PubMedCrossRefGoogle Scholar
  35. Grad LI, Pokrishevsky E, Silverman JM et al (2014) Exosome-dependent and independent mechanisms are involved in prion-like transmission of propagated Cu/Zn superoxide dismutase misfolding. Prion 8:331–335PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gredal O, Rosenbaum S, Topp S et al (1997) Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy. Neurology 48:878–881PubMedCrossRefPubMedCentralGoogle Scholar
  37. Haeusler AR, Donnelly CJ, Periz G et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200PubMedCrossRefPubMedCentralGoogle Scholar
  38. Haidet-Phillips AM, Hester ME, Miranda CJ et al (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29:824–828PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hazelett DJ, Chang JC, Lakeland DL et al (2012) Comparison of parallel high-throughput RNA sequencing between knockout of TDP-43 and its overexpression reveals primarily nonreciprocal and nonoverlapping gene expression changes in the central nervous system of Drosophila. G3 (Bethesda) 2:789–802CrossRefPubMedPubMedCentralGoogle Scholar
  40. He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 66:1239–1256PubMedCrossRefGoogle Scholar
  41. Heath PR, Kirby J, Shaw PJ (2013) Investigating cell death mechanisms in amyotrophic lateral sclerosis using transcriptomics. Front Cell Neurosci 7:259PubMedCrossRefPubMedCentralGoogle Scholar
  42. Heck MV, Azizov M, Stehning T et al (2014) Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics 15:135–144PubMedCrossRefPubMedCentralGoogle Scholar
  43. Henriques A, Gonzalez De Aguilar JL (2011) Can transcriptomics cut the gordian knot of amyotrophic lateral sclerosis? Curr Genomics 12:506–515PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hicks GG, Singh N, Nashabi A et al (2000) Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet 24:175–179PubMedCrossRefGoogle Scholar
  45. Highley JR, Kirby J, Jansweijer JA et al (2014) Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathol Appl Neurobiol 40:670–685PubMedCrossRefGoogle Scholar
  46. Honda D, Ishigaki S, Iguchi Y et al (2013) The ALS/FTLD-related RNA-binding proteins TDP-43 and FUS have common downstream RNA targets in cortical neurons. FEBS Open Bio 4:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ikeda K, Iwasaki Y, Kinoshita M et al (1998) Quantification of brain metabolites in ALS by localized proton magnetic spectroscopy. Neurology 50:576–577PubMedCrossRefGoogle Scholar
  48. Ilieva H, Polymenidou M, Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jones AP, Gunawardena WJ, Coutinho CM et al (1995) Preliminary results of proton magnetic resonance spectroscopy in motor neurone disease (amyotrophic lateral sclerosis). J Neurol Sci 129(Suppl):85–89PubMedCrossRefGoogle Scholar
  50. Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574PubMedCrossRefGoogle Scholar
  51. Kapeli K, Martinez FJ, Yeo GW (2017) Genetic mutations in RNA-binding proteins and their roles in ALS. Hum Genet 136:1193–1214PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kim HJ, Kim NC, Wang YD et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kraemer BC, Schuck T, Wheeler JM et al (2010) Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol 119:409–419PubMedCrossRefPubMedCentralGoogle Scholar
  54. Krokidis MG, Vlamos P (2018) Transcriptomics in amyotrophic lateral sclerosis. Front Biosci (Elite Ed) 10:103–121CrossRefGoogle Scholar
  55. Kumar V, Islam A, Hassan MI et al (2016a) Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem 121:903–917PubMedCrossRefGoogle Scholar
  56. Kumar V, Islam A, Hassan MI et al (2016b) Delineating the relationship between amyotrophic lateral sclerosis and frontotemporal dementia: sequence and structure-based predictions. Biochim Biophys Acta 1862:1742–1754PubMedCrossRefGoogle Scholar
  57. Kumar V, Kashav T, Islam A et al (2016c) Structural insight into C9orf72 hexanucleotide repeat expansions: towards new therapeutic targets in FTD-ALS. Neurochem Int 100:11–20PubMedCrossRefGoogle Scholar
  58. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208PubMedCrossRefGoogle Scholar
  59. Lawton KA, Cudkowicz ME, Brown MV et al (2012) Biochemical alterations associated with ALS. Amyotroph Lateral Scler 13:110–118PubMedCrossRefGoogle Scholar
  60. Lawton KA, Brown MV, Alexander D et al (2014) Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph Lateral Scler Frontotemporal Degener 15:362–370PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lee KH, Zhang P, Kim HJ et al (2016) C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167:774–788.e717PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lee YB, Chen HJ, Peres JN et al (2013) Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5:1178–1186PubMedCrossRefPubMedCentralGoogle Scholar
  63. Li H, Watford W, Li C et al (2007) Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development. J Clin Invest 117:1314–1323PubMedCrossRefPubMedCentralGoogle Scholar
  64. Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438PubMedCrossRefPubMedCentralGoogle Scholar
  65. Liu TY, Chen YC, Jong YJ et al (2017) Muscle developmental defects in heterogeneous nuclear Ribonucleoprotein A1 knockout mice. Open Biol 7:160303PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079PubMedCrossRefPubMedCentralGoogle Scholar
  67. Maharjan N, Kunzli C, Buthey K et al (2017) C9ORF72 regulates stress granule formation and its deficiency impairs stress granule assembly, hypersensitizing cells to stress. Mol Neurobiol 54:3062–3077PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mancuso R, Navarro X (2015) Amyotrophic lateral sclerosis: current perspectives from basic research to the clinic. Prog Neurobiol 133:1–26PubMedCrossRefGoogle Scholar
  69. Mehta P, Kaye W, Bryan L et al (2016) Prevalence of amyotrophic lateral sclerosis – United States, 2012–2013. MMWR Surveill Summ 65:1–12PubMedCrossRefGoogle Scholar
  70. Mori K, Lammich S, Mackenzie IR et al (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125:413–423PubMedCrossRefPubMedCentralGoogle Scholar
  71. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264PubMedCrossRefPubMedCentralGoogle Scholar
  72. Moujalled D, White AR (2016) Advances in the development of disease-modifying treatments for amyotrophic lateral sclerosis. CNS Drugs 30:227–243PubMedCrossRefPubMedCentralGoogle Scholar
  73. Nakaya T, Alexiou P, Maragkakis M et al (2013) FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns. RNA 19:498–509PubMedCrossRefPubMedCentralGoogle Scholar
  74. Narayanan RK, Mangelsdorf M, Panwar A et al (2013) Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph Lateral Scler Frontotemporal Degener 14:252–260PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nicholson KA, Cudkowicz ME, Berry JD (2015) Clinical trial designs in amyotrophic lateral sclerosis: does one design fit all? Neurotherapeutics 12:376–383PubMedCrossRefPubMedCentralGoogle Scholar
  76. Nussbacher JK, Batra R, Lagier-Tourenne C et al (2015) RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci 38:226–236PubMedCrossRefPubMedCentralGoogle Scholar
  77. Pandya RS, Zhu H, Li W et al (2013) Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 70:4729–4745PubMedCrossRefPubMedCentralGoogle Scholar
  78. Paratore S, Pezzino S, Cavallaro S (2012) Identification of pharmacological targets in amyotrophic lateral sclerosis through genomic analysis of deregulated genes and pathways. Curr Genomics 13:321–333PubMedCrossRefPubMedCentralGoogle Scholar
  79. Perry DC, Miller BL (2013) Frontotemporal dementia. Semin Neurol 33:336–341PubMedCrossRefPubMedCentralGoogle Scholar
  80. Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2012) Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res 1462:3–15PubMedCrossRefPubMedCentralGoogle Scholar
  81. Protter DS, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679PubMedCrossRefPubMedCentralGoogle Scholar
  82. Prudencio M, Belzil VV, Batra R et al (2015) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 18:1175–1182PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ratnavalli E, Brayne C, Dawson K et al (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621PubMedCrossRefPubMedCentralGoogle Scholar
  85. Reis-Filho JS (2009) Next-generation sequencing. Breast Cancer Res 11(Suppl 3):S12PubMedCrossRefPubMedCentralGoogle Scholar
  86. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ringholz GM, Appel SH, Bradshaw M et al (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65:586–590PubMedCrossRefPubMedCentralGoogle Scholar
  88. Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14:248–264PubMedCrossRefPubMedCentralGoogle Scholar
  89. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rossi S, Serrano A, Gerbino V et al (2015) Nuclear accumulation of mRNAs underlies G4C2-repeat-induced translational repression in a cellular model of C9orf72 ALS. J Cell Sci 128:1787–1799PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rozen S, Cudkowicz ME, Bogdanov M et al (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sareen D, O’Rourke JG, Meera P et al (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5:208ra149PubMedCrossRefPubMedCentralGoogle Scholar
  93. Saris CG, Groen EJ, Koekkoek JA et al (2013a) Meta-analysis of gene expression profiling in amyotrophic lateral sclerosis: a comparison between transgenic mouse models and human patients. Amyotroph Lateral Scler Frontotemporal Degener 14:177–189PubMedCrossRefPubMedCentralGoogle Scholar
  94. Saris CG, Groen EJ, van Vught PW et al (2013b) Gene expression profile of SOD1-G93A mouse spinal cord, blood and muscle. Amyotroph Lateral Scler Frontotemporal Degener 14:190–198PubMedCrossRefPubMedCentralGoogle Scholar
  95. Satoh J, Yamamoto Y, Kitano S et al (2014) Molecular network analysis suggests a logical hypothesis for the pathological role of c9orf72 in amyotrophic lateral sclerosis/frontotemporal dementia. J Cent Nerv Syst Dis 6:69–78PubMedCrossRefPubMedCentralGoogle Scholar
  96. Shaw PJ (2005) Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry 76:1046–1057PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sieben A, Van Langenhove T, Engelborghs S et al (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124:353–372PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672PubMedCrossRefPubMedCentralGoogle Scholar
  99. Stepto A, Gallo JM, Shaw CE et al (2014) Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol 127:377–389PubMedCrossRefPubMedCentralGoogle Scholar
  100. Todd TW, Petrucelli L (2016) Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem 138:145–162PubMedCrossRefPubMedCentralGoogle Scholar
  101. Urushitani M, Sik A, Sakurai T et al (2006) Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9:108–118PubMedCrossRefPubMedCentralGoogle Scholar
  102. van Blitterswijk M, van Es MA, Hennekam EA et al (2012) Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21:3776–3784PubMedCrossRefPubMedCentralGoogle Scholar
  103. van Blitterswijk M, Wang ET, Friedman BA et al (2013) Characterization of FUS mutations in amyotrophic lateral sclerosis using RNA-Seq. PLoS One 8:e60788PubMedCrossRefPubMedCentralGoogle Scholar
  104. Wang B, Xi Y (2013) Challenges for microRNA microarray data analysis. Microarrays (Basel) 2:34–50CrossRefGoogle Scholar
  105. Wen X, Westergard T, Pasinelli P et al (2017) Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene. Neurosci Lett 636:16–26PubMedCrossRefPubMedCentralGoogle Scholar
  106. Wheaton MW, Salamone AR, Mosnik DM et al (2007) Cognitive impairment in familial ALS. Neurology 69:1411–1417PubMedCrossRefPubMedCentralGoogle Scholar
  107. Wood LB, Winslow AR, Strasser SD (2015) Systems biology of neurodegenerative diseases. Integr Biol (Camb) 7:758–775CrossRefGoogle Scholar
  108. Wroe R, Wai-Ling Butler A, Andersen PM et al (2008) ALSOD: the amyotrophic lateral sclerosis online database. Amyotroph Lateral Scler 9:249–250PubMedCrossRefPubMedCentralGoogle Scholar
  109. Wu CH, Fallini C, Ticozzi N et al (2012) Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488:499–503PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wuolikainen A, Hedenstrom M, Moritz T et al (2009) Optimization of procedures for collecting and storing of CSF for studying the metabolome in ALS. Amyotroph Lateral Scler 10:229–236PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wuolikainen A, Moritz T, Marklund SL et al (2011) Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLoS One 6:e17947PubMedCrossRefPubMedCentralGoogle Scholar
  112. Zhan L, Hanson KA, Kim SH et al (2013) Identification of genetic modifiers of TDP-43 neurotoxicity in Drosophila. PLoS One 8:e57214PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Biological SciencesCentral University of South BiharPatnaIndia
  2. 2.Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia IslamiaNew DelhiIndia

Personalised recommendations