The Interplay of Non-coding RNAs and X Chromosome Inactivation in Human Disease

  • Francesco RussoEmail author
  • Federico De Masi
  • Søren Brunak
  • Kirstine Belling
Part of the RNA Technologies book series (RNATECHN)


Non-coding RNAs (ncRNAs) represent key molecular players in biological processes and human disease. Several ncRNA types have been discovered including microRNAs (miRNAs) of around 23 nucleotides and long non-coding RNAs (lncRNAs) that are above 200 nucleotides in length. One of the first functional ncRNAs discovered was the lncRNA named X inactive specific transcript (XIST). XIST is the main actor in a fundamental process called X chromosome inactivation (XCI) where, in females, one of the two X chromosomes is silenced to balance the extra gene expression dosage. In this book chapter, we present the emerging evidence for the importance of XCI in diseases such as gastric and bladder cancer and genetic pathologies such as Klinefelter (47,XXY) and Turner (45,X0) syndromes. Furthermore, a new role for the crosstalk between XIST and miRNAs is discussed. Finally, new evidence for sex bias of XCI in human tissues and development of cancer is presented.


Non-coding RNAs X chromosome inactivation Human disease Aneuploidies Cancer Comorbidities 



We would like to thank the Novo Nordisk Foundation for supporting our research (grant agreement NNF14CC0001).


  1. Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2:59–67CrossRefPubMedCentralPubMedGoogle Scholar
  2. Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedCentralGoogle Scholar
  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedCentralPubMedGoogle Scholar
  5. Belling K, Russo F, Jensen AB et al (2017) Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity. Hum Mol Genet 26:1219–1229CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bonomi M, Rochira V, Pasquali D, Balercia G, Jannini EA et al (2017) Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. J Endocrinol Invest 40:123–134CrossRefPubMedCentralPubMedGoogle Scholar
  7. Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36CrossRefPubMedCentralPubMedGoogle Scholar
  8. Brockdorff N, Ashworth A, Kay GF et al (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526CrossRefPubMedCentralPubMedGoogle Scholar
  9. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542CrossRefPubMedCentralPubMedGoogle Scholar
  10. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529CrossRefPubMedCentralPubMedGoogle Scholar
  11. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004CrossRefPubMedCentralPubMedGoogle Scholar
  12. Calin GA, Ferracin M, Cimmino A et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801CrossRefPubMedCentralPubMedGoogle Scholar
  13. Cerase A, Pintacuda G, Tattermusch A, Avner P (2015) Xist localization and function: new insights from multiple levels. Genome Biol 16:166CrossRefPubMedCentralPubMedGoogle Scholar
  14. Chaligne R, Heard E (2014) X-chromosome inactivation in development and cancer. FEBS Lett 588:2514–2522CrossRefPubMedCentralPubMedGoogle Scholar
  15. Chen DL, Chen LZ, Lu YX et al (2017) Long noncoding RNA XIST expedites metastasis and modulates epithelial-mesenchymal transition in colorectal cancer. Cell Death Dis 8:e3011CrossRefPubMedCentralPubMedGoogle Scholar
  16. Cook MB, Dawsey SM, Freedman ND et al (2009) Sex disparities in cancer incidence by period and age. Cancer Epidemiol Biomark Prev 18:1174–1182CrossRefGoogle Scholar
  17. Dunford A, Weinstock DM, Savova V et al (2017) Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet 49:10–16CrossRefPubMedCentralPubMedGoogle Scholar
  18. Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20:R858–R861CrossRefPubMedCentralPubMedGoogle Scholar
  19. Edgren G, Liang L, Adami HO, Chang ET (2012) Enigmatic sex disparities in cancer incidence. Eur J Epidemiol 27:187–196CrossRefPubMedCentralPubMedGoogle Scholar
  20. Epstein CJ, Smith S, Travis B, Tucker G (1978) Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274:500–503CrossRefPubMedCentralPubMedGoogle Scholar
  21. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114CrossRefPubMedCentralPubMedGoogle Scholar
  22. Goto T, Monk M (1998) Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev 62:362–378PubMedPubMedCentralGoogle Scholar
  23. Hu JX, Thomas CE, Brunak S (2016) Network biology concepts in complex disease comorbidities. Nat Rev Genet 17:615–629CrossRefPubMedCentralPubMedGoogle Scholar
  24. Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100CrossRefPubMedCentralPubMedGoogle Scholar
  25. Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070CrossRefPubMedCentralGoogle Scholar
  26. Jensen AB, Moseley PL, Oprea TI et al (2014) Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nat Commun 5:4022CrossRefPubMedCentralPubMedGoogle Scholar
  27. Jiang J, Jing Y, Cost GJ et al (2013) Translating dosage compensation to trisomy 21. Nature 500:296–300CrossRefPubMedCentralPubMedGoogle Scholar
  28. Kay GF, Penny GD, Patel D, Ashworth A, Brockdorff N et al (1993) Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72:171–182CrossRefPubMedCentralPubMedGoogle Scholar
  29. Kratzer PG, Gartler SM (1978) HGPRT activity changes in preimplantation mouse embryos. Nature 274:503–504CrossRefPubMedCentralPubMedGoogle Scholar
  30. Lagana A, Russo F, Sismeiro C, Giugno R, Pulvirenti A et al (2010) Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material. PLoS One 5:e11166CrossRefPubMedCentralPubMedGoogle Scholar
  31. Lee JT (2005) Regulation of X-chromosome counting by Tsix and Xite sequences. Science 309:768–771CrossRefPubMedCentralPubMedGoogle Scholar
  32. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefGoogle Scholar
  33. Lu Q, Yu T, Ou X, Cao D, Xie T, Chen X (2017) Potential lncRNA diagnostic biomarkers for early gastric cancer. Mol Med Rep 16:9545–9552CrossRefPubMedCentralPubMedGoogle Scholar
  34. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373CrossRefPubMedCentralPubMedGoogle Scholar
  35. Ma L, Zhou Y, Luo X, Gao H, Deng X et al (2017) Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer. Oncotarget 8:4125–4135PubMedPubMedCentralGoogle Scholar
  36. Minkovsky A, Barakat TS, Sellami N, Chin MH, Gunhanlar N et al (2013) The pluripotency factor-bound intron 1 of Xist is dispensable for X chromosome inactivation and reactivation in vitro and in vivo. Cell Rep 3:905–918CrossRefPubMedCentralPubMedGoogle Scholar
  37. Mo Y, Lu Y, Wang P et al (2017) Long non-coding RNA XIST promotes cell growth by regulating miR-139-5p/PDK1/AKT axis in hepatocellular carcinoma. Tumour Biol 39:1010428317690999CrossRefPubMedGoogle Scholar
  38. Monk M, Harper M (1978) X-chromosome activity in preimplantation mouse embryos from XX and XO mothers. J Embryol Exp Morphol 46:53–64PubMedGoogle Scholar
  39. Mueller JL, Skaletsky H, Brown LG et al (2013) Independent specialization of the human and mouse X chromosomes for the male germ line. Nat Genet 45:1083–1087CrossRefPubMedCentralPubMedGoogle Scholar
  40. Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM et al (2005) Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438:369–373CrossRefPubMedCentralPubMedGoogle Scholar
  41. Okita K, Yamanaka S (2011) Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci 366:2198–2207CrossRefPubMedCentralPubMedGoogle Scholar
  42. Passerini V, Ozeri-Galai E, de Pagter MS et al (2016) The presence of extra chromosomes leads to genomic instability. Nat Commun 7:10754CrossRefPubMedCentralPubMedGoogle Scholar
  43. Pfeffer SR, Yang CH, Pfeffer LM (2015) The role of miR-21 in cancer. Drug Dev Res 76:270–277CrossRefPubMedCentralPubMedGoogle Scholar
  44. Raudsepp T, Das PJ, Avila F, Chowdhary BP (2012) The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex Dev 6:72–83CrossRefPubMedCentralPubMedGoogle Scholar
  45. Soh YQ, Alföldi J, Pyntikova T et al (2014) Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159:800–813CrossRefPubMedCentralPubMedGoogle Scholar
  46. Song SJ, Poliseno L, Song MS et al (2013) MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154:311–324CrossRefPubMedCentralPubMedGoogle Scholar
  47. Takagi N, Wake N, Sasaki M (1978) Cytologic evidence for preferential inactivation of the paternally derived X chromosome in XX mouse blastocysts. Cytogenet Cell Genet 20:240–248CrossRefPubMedCentralPubMedGoogle Scholar
  48. Tantai J, Hu D, Yang Y, Geng J (2015) Combined identification of long non-coding RNA XIST and HIF1A-AS1 in serum as an effective screening for non-small cell lung cancer. Int J Clin Exp Pathol 8:7887–7895PubMedPubMedCentralGoogle Scholar
  49. Theisen A, Shaffer LG (2010) Disorders caused by chromosome abnormalities. Appl Clin Genet 3:159–174PubMedPubMedCentralGoogle Scholar
  50. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285–R295CrossRefPubMedCentralPubMedGoogle Scholar
  51. Tukiainen T, Villani AC, Yen A et al (2017) Landscape of X chromosome inactivation across human tissues. Nature 550:244–248CrossRefPubMedCentralPubMedGoogle Scholar
  52. Xiong Y, Wang L, Li Y, Chen M, He W et al (2017) The long non-coding RNA XIST interacted with MiR-124 to modulate bladder cancer growth, invasion and migration by targeting androgen receptor (AR). Cell Physiol Biochem 43:405–418CrossRefPubMedCentralPubMedGoogle Scholar
  53. Zhang B, Pan X, Cobb GP, Anderson TA (2007) MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12CrossRefPubMedCentralPubMedGoogle Scholar
  54. Zhang Q, Guo X, Tian T et al (2017) Detection of turner syndrome using X-chromosome inactivation specific differentially methylated CpG sites: a pilot study. Clin Chim Acta 468:174–179CrossRefPubMedCentralPubMedGoogle Scholar
  55. Zinn AR, Page DC, Fisher EM (1993) Turner syndrome: the case of the missing sex chromosome. Trends Genet 9:90–93CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Francesco Russo
    • 1
    Email author
  • Federico De Masi
    • 2
  • Søren Brunak
    • 1
  • Kirstine Belling
    • 1
  1. 1.Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Intomics A/SLyngby (Copenhagen)Denmark

Personalised recommendations