Advertisement

Systems Biology of Genome Structure and Dynamics

  • Zahra Fahmi
  • Sven A. Sewitz
  • Karen Lipkow
Chapter
Part of the RNA Technologies book series (RNATECHN)

Abstract

Our view of the packed genome inside a nucleus has evolved greatly over the past decade. Aided by novel experimental and bioinformatic analysis techniques and detailed computational models, fundamental insights into the structure and dynamics of chromosomes have been gained. This has revealed that genome organisation has an essential role in controlling genome function during normal growth, cellular differentiation, and stress response, showing that, overall, 3D reorganisation is tightly linked to changes in gene expression. Chromatin, which is composed of DNA and a large number of different chromatin-associated proteins and RNAs, is often chemically modified, in patterns that affect gene expression. It has become clear that this highly interconnected system requires computational simulations to gain an understanding of the underlying system-wide mechanisms.

In this review, we describe different modelling approaches that are used to investigate both the linear and spatial arrangement of chromatin. We illustrate how dynamic computer simulations are used to study the mechanisms that control and maintain genome architecture and drive changes in this structure. We focus on models of the dynamics of epigenetic modifications, of protein–DNA interactions, and the polymer dynamics of chromosomes. These approaches provide reliable frameworks to integrate additional biological data; enable accurate, genome-wide predictions; and allow the discovery of new mechanisms.

Keywords

Chromatin organisation Computational model Histone modification Facilitated diffusion Polymer Chromatin loop Self-organisation  

References

  1. Alipour E, Marko JF (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40:11202–11212CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6:e1000705CrossRefPubMedPubMedCentralGoogle Scholar
  4. Angel A, Song J, Dean C, Howard M (2011) A polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105–108CrossRefPubMedGoogle Scholar
  5. Babu MM, Janga SC, de Santiago I, Pombo A (2008) Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 18:571–582CrossRefPubMedGoogle Scholar
  6. Benedetti F, Dorier J, Burnier Y, Stasiak A (2014) Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes. Nucleic Acids Res 42:2848–2855CrossRefPubMedGoogle Scholar
  7. Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14:131–160CrossRefPubMedGoogle Scholar
  8. Berg OG, Winter RB, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20:6929–6948CrossRefPubMedGoogle Scholar
  9. Berg OG, Winter RB, von Hippel PH (1982) How do genome-regulatory proteins locate their DNA target sites? Trends Biochem Sci 7:52–55CrossRefGoogle Scholar
  10. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326CrossRefPubMedGoogle Scholar
  11. Berry S, Dean C, Howard M (2017) Slow chromatin dynamics allow polycomb target genes to filter fluctuations in transcription factor activity. Cell Syst 4:445–457.e8CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bhattacherjee A, Levy Y (2014a) Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding. Nucleic Acids Res 42:12404–12414CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhattacherjee A, Levy Y (2014b) Search by proteins for their DNA target site: 2. The effect of DNA conformation on the dynamics of multidomain proteins. Nucleic Acids Res 42:12415–12424CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661–678CrossRefPubMedGoogle Scholar
  15. Brackley CA, Cates ME, Marenduzzo D (2013) Intracellular facilitated diffusion: searchers, crowders, and blockers. Phys Rev Lett 111:108101CrossRefPubMedGoogle Scholar
  16. Brackley CA, Brown JM, Waithe D et al (2016) Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models. Genome Biol 17:59CrossRefPubMedPubMedCentralGoogle Scholar
  17. Casolari JM, Brown CR, Komili S et al (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439CrossRefPubMedGoogle Scholar
  18. Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20:290–299CrossRefPubMedGoogle Scholar
  19. Cheng TMK, Heeger S, Chaleil RAG et al (2015) A simple biophysical model emulates budding yeast chromosome condensation. eLIFE 4:e05565Google Scholar
  20. Chiariello AM, Annunziatella C, Bianco S et al (2016) Polymer physics of chromosome large-scale 3D organisation. Sci Rep 6:29775CrossRefPubMedPubMedCentralGoogle Scholar
  21. Das RK, Kolomeisky AB (2010) Facilitated search of proteins on DNA: correlations are important. Phys Chem Chem Phys 12:2999–3004CrossRefPubMedGoogle Scholar
  22. David-Rus D, Mukhopadhyay S, Lebowitz JL, Sengupta AM (2009) Inheritance of epigenetic chromatin silencing. J Theor Biol 258:112–120CrossRefPubMedGoogle Scholar
  23. Dindot SV, Cohen ND (2013) Epigenetic regulation of gene expression: emerging applications for horses. J Equine Vet Sci 33:288–294CrossRefGoogle Scholar
  24. Dixon JR, Gorkin DU, Ren B (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62:668–680CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dodd IB, Sneppen K (2011) Barriers and silencers: a theoretical toolkit for control and containment of nucleosome-based epigenetic states. J Mol Biol 414:624–637CrossRefPubMedGoogle Scholar
  26. Dodd IB, Micheelsen MA, Sneppen K, Thon G (2007) Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129:813–822CrossRefPubMedGoogle Scholar
  27. Doyle B, Fudenberg G, Imakaev M, Mirny LA (2014) Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLoS Comput Biol 10:e1003867CrossRefPubMedPubMedCentralGoogle Scholar
  28. Erdel F, Greene EC (2016) Generalized nucleation and looping model for epigenetic memory of histone modifications. Proc Natl Acad Sci U S A 113:E4180–E4189CrossRefPubMedPubMedCentralGoogle Scholar
  29. Finlan LE, Sproul D, Thomson I et al (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4:e1000039CrossRefPubMedPubMedCentralGoogle Scholar
  30. Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114CrossRefGoogle Scholar
  31. Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114:212–229CrossRefPubMedGoogle Scholar
  32. Fudenberg G, ImakaevM LC et al (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049CrossRefPubMedPubMedCentralGoogle Scholar
  33. Furini S, Barbini P, Domene C (2013) DNA-recognition process described by MD simulations of the lactose repressor protein on a specific and a non-specific DNA sequence. Nucleic Acids Res 41:3963–3972CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ganai N, Sengupta S, Menon GI (2014) Chromosome positioning from activity-based segregation. Nucleic Acids Res 42:4145–4159CrossRefPubMedPubMedCentralGoogle Scholar
  35. Giorgetti L, Galupa R, Nora EP et al (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–963CrossRefPubMedPubMedCentralGoogle Scholar
  36. Golkaram M, Jang J, Hellander S et al (2017) The role of chromatin density in cell population heterogeneity during stem cell differentiation. Sci Rep 7:13307CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gómez-Díaz E, Corces VG (2014) Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol 24:703–711CrossRefPubMedPubMedCentralGoogle Scholar
  38. Grewal SIS, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802CrossRefPubMedGoogle Scholar
  39. Guidi M, Ruault M, Marbouty M et al (2015) Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol 16:206CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hathaway NA, Bell O, Hodges C et al (2012) Dynamics and memory of heterochromatin in living cells. Cell 149:1447–1460CrossRefPubMedPubMedCentralGoogle Scholar
  41. Heun P, Taddei A, Gasser SM (2001) From snapshots to moving pictures: new perspectives on nuclear organization. Trends Cell Biol 11:519–525CrossRefPubMedGoogle Scholar
  42. Hodges C, Crabtree GR (2012) Dynamics of inherently bounded histone modification domains. Proc Natl Acad Sci U S A 109:13296–13301CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hofmann A, Heermann DW (2015) The role of loops on the order of eukaryotes and prokaryotes. FEBS Lett 589:2958–2965CrossRefPubMedGoogle Scholar
  44. Iwahara J, Levy Y (2013) Speed-stability paradox in DNA-scanning by zinc-finger proteins. Transcription 4:58–61CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254CrossRefGoogle Scholar
  46. Javierre BM, Burren OS, Wilder SP et al (2016) Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167:1369–1384CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jerabek H, Heermann DW (2012) Expression-dependent folding of interphase chromatin. PLoS One 7:e37525CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jirgensons B (1958) Optical rotation and viscosity of native and denatured proteins. X. Further studies on optical rotatory dispersion. Arch Biochem Biophys 74:57–69CrossRefPubMedGoogle Scholar
  49. Jost D, Carrivain P, Cavalli G, Vaillant C (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42:9553–9561CrossRefPubMedPubMedCentralGoogle Scholar
  50. Koslover EF, Spakowitz AJ (2014) Multiscale dynamics of semiflexible polymers from a universal coarse-graining procedure. Phys Rev E Stat Nonlinear Soft Matter Phys 90:013304CrossRefGoogle Scholar
  51. Kouzine F, Sanford S, Elisha-Feil Z, Levens D (2008) The functional response of upstream DNA to dynamic supercoiling in vivo. Nat Struct Mol Biol 15:146–154CrossRefPubMedGoogle Scholar
  52. Kouzine F, Gupta A, Baranello L et al (2013) Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 20:396–403CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ku WL, Girvan M, Yuan G-C et al (2013) Modeling the dynamics of bivalent histone modifications. PLoS One 8:e77944CrossRefPubMedPubMedCentralGoogle Scholar
  54. Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111:151–154CrossRefPubMedGoogle Scholar
  55. Lanctôt C, Cheutin T, Cremer M et al (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115CrossRefPubMedGoogle Scholar
  56. Lazar-Stefanita L, Scolari VF, Mercy G et al (2017) Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J 36:2684–2697Google Scholar
  57. Le TBK, Imakaev MV, Mirny LA, Laub MT (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342:731–734CrossRefPubMedPubMedCentralGoogle Scholar
  58. Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151CrossRefPubMedGoogle Scholar
  59. Liu L, Cherstvy AG, Metzler R (2017) Facilitated diffusion of transcription factor proteins with anomalous bulk diffusion. J Phys Chem B 121:1284–1289CrossRefPubMedGoogle Scholar
  60. Loi D, Mossa S, Cugliandolo LF (2008) Effective temperature of active matter. Phys Rev E Stat Nonlinear Soft Matter Phys 77:051111CrossRefGoogle Scholar
  61. Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167:1170–1187CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lupiáñez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mahmutovic A, Berg OG, Elf J (2015) What matters for lac repressor search in vivo—sliding, hopping, intersegment transfer, crowding on DNA or recognition? Nucleic Acids Res 43:3454–3464CrossRefPubMedPubMedCentralGoogle Scholar
  64. Marklund EG, Mahmutovic A, Berg OG et al (2013) Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models. Proc Natl Acad Sci U S A 110:19796–19801CrossRefPubMedPubMedCentralGoogle Scholar
  65. Micheelsen MA, Mitarai N, Sneppen K, Dodd IB (2010) Theory for the stability and regulation of epigenetic landscapes. Phys Biol 7:026010CrossRefPubMedPubMedCentralGoogle Scholar
  66. Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mukhopadhyay S, Nagaraj VH, Sengupta AM (2010) Locus dependence in epigenetic chromatin silencing. Biosystems 102:49–54CrossRefPubMedPubMedCentralGoogle Scholar
  68. Müller-Ott K, Erdel F, Matveeva A et al (2014) Specificity, propagation, and memory of pericentric heterochromatin. Mol Syst Biol 10:746CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64CrossRefGoogle Scholar
  70. Nakayama J, Rice JC, Strahl BD et al (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113CrossRefPubMedPubMedCentralGoogle Scholar
  71. Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745CrossRefPubMedPubMedCentralGoogle Scholar
  72. Naughton C, Avlonitis N, Corless S et al (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20:387–395CrossRefPubMedPubMedCentralGoogle Scholar
  73. Nazarov LI, Tamm MV, Avetisov VA, Nechaev SK (2015) A statistical model of intra-chromosome contact maps. Soft Matter 11:1019–1025CrossRefPubMedPubMedCentralGoogle Scholar
  74. Olarte-Plata JD, Haddad N, Vaillant C, Jost D (2016) The folding landscape of the epigenome. Phys Biol 13:026001CrossRefPubMedPubMedCentralGoogle Scholar
  75. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584CrossRefPubMedPubMedCentralGoogle Scholar
  76. Papantonis A, Cook PR (2011) Fixing the model for transcription: the DNA moves, not the polymerase. Transcription 2:41–44CrossRefPubMedPubMedCentralGoogle Scholar
  77. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609CrossRefPubMedPubMedCentralGoogle Scholar
  78. Phillip Y, Schreiber G (2013) Formation of protein complexes in crowded environments – from in vitro to in vivo. FEBS Lett 587:1046–1052CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ptashne M, Gann A (2002) Genes & signals. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  80. Racko D, Benedetti F, Dorier J, Stasiak A (2017) Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res 46:1648–1660Google Scholar
  81. Ramakrishnan V (1997) Histone structure and the organization of the nucleosome. Annu Rev Biophys Biomol Struct 26:83–112CrossRefPubMedGoogle Scholar
  82. Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–247CrossRefPubMedGoogle Scholar
  83. Rohlf T, Steiner L, Przybilla J et al (2012) Modeling the dynamic epigenome: from histone modifications towards self-organizing chromatin. Epigenomics 4:205–219CrossRefPubMedGoogle Scholar
  84. Rosanova A, Colliva A, Osella M, Caselle M (2017) Modelling the evolution of transcription factor binding preferences in complex eukaryotes. Sci Rep 7:7596CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sanborn AL, Rao SSP, Huang S-C et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112:E6456–E6465CrossRefPubMedPubMedCentralGoogle Scholar
  86. Schmidt HG, Sewitz S, Andrews SS, Lipkow K (2014) An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding. PLoS One 9:e108575CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schmitt AD, Hu M, Jung I et al (2016a) A Compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep 17:2042–2059CrossRefPubMedPubMedCentralGoogle Scholar
  88. Schmitt AD, Hu M, Ren B (2016b) Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol 17:743–755CrossRefPubMedPubMedCentralGoogle Scholar
  89. Schübeler D (2015) Function and information content of DNA methylation. Nature 517:321–326CrossRefPubMedGoogle Scholar
  90. Sedighi M, Sengupta AM (2007) Epigenetic chromatin silencing: bistability and front propagation. Phys Biol 4:246–255CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sewitz S, Lipkow K (2016) Systems biology approaches for understanding genome architecture. Methods Mol Biol 1431:109–126CrossRefPubMedGoogle Scholar
  92. Sewitz SA, Fahmi Z, Aljebali L et al (2017a) Heterogeneous chromatin mobility derived from chromatin states is a determinant of genome organisation in S. cerevisiae. bioRxiv:106344.  https://doi.org/10.1101/106344
  93. Sewitz S, Fahmi Z, Lipkow K (2017b) Higher order assembly: folding the chromosome. Curr Opin Struct Biol 42:162–168CrossRefPubMedGoogle Scholar
  94. Shankaranarayana GD, Motamedi MR, Moazed D, Grewal SIS (2003) Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr Biol 13:1240–1246CrossRefPubMedGoogle Scholar
  95. Shukron O, Holcman D (2017) Transient chromatin properties revealed by polymer models and stochastic simulations constructed from chromosomal capture data. PLoS Comput Biol 13:e1005469CrossRefPubMedPubMedCentralGoogle Scholar
  96. Smolle M, Workman JL (2013) Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta 1829:84–97CrossRefPubMedGoogle Scholar
  97. Smrek J, Kremer K (2017) Small activity differences drive phase separation in active-passive polymer mixtures. Phys Rev Lett 118:098002CrossRefPubMedGoogle Scholar
  98. Tabaka M, Kalwarczyk T, Hołyst R (2014) Quantitative influence of macromolecular crowding on gene regulation kinetics. Nucleic Acids Res 42:727–738CrossRefPubMedGoogle Scholar
  99. Tark-Dame M, van Driel R, Heermann DW (2011) Chromatin folding – from biology to polymer models and back. J Cell Sci 124:839–845CrossRefPubMedGoogle Scholar
  100. Tark-Dame M, Jerabek H, Manders EMM et al (2014) Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLoS Comput Biol 10:e1003877CrossRefPubMedPubMedCentralGoogle Scholar
  101. Tee W-W, Shen SS, Oksuz O et al (2014) Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 156:678–690CrossRefPubMedPubMedCentralGoogle Scholar
  102. Tiana G, Amitai A, Pollex T et al (2016) Structural fluctuations of the chromatin fiber within topologically associating domains. Biophys J 110:1234–1245CrossRefPubMedPubMedCentralGoogle Scholar
  103. Torella R, Li J, Kinrade E et al (2014) A combination of computational and experimental approaches identifies DNA sequence constraints associated with target site binding specificity of the transcription factor CSL. Nucleic Acids Res 42:10550–10563CrossRefPubMedPubMedCentralGoogle Scholar
  104. Ulianov SV, Khrameeva EE, Gavrilov AA et al (2016) Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res 26:70–84CrossRefPubMedPubMedCentralGoogle Scholar
  105. Uusküla-Reimand L, Hou H, Samavarchi-Tehrani P et al (2016) Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 17:182PubMedPubMedCentralGoogle Scholar
  106. van Holde KE (1989) Chromatin. Springer series in molecular and cell biology. Springer, New YorkGoogle Scholar
  107. Vazquez J, Belmont AS, Sedat JW (2001) Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 11:1227–1239CrossRefPubMedGoogle Scholar
  108. West AG, Gaszner M, Felsenfeld G (2002) Insulators: many functions, many mechanisms. Genes Dev 16:271–288CrossRefPubMedGoogle Scholar
  109. Wollman AJ, Shashkova S, Hedlund EG et al (2017) Transcription factor clusters regulate genes in eukaryotic cells. eLIFE 6:e27451Google Scholar
  110. Wu HY, Shyy SH, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433–440CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zabet NR, Adryan B (2012a) GRiP: a computational tool to simulate transcription factor binding in prokaryotes. Bioinformatics 28:1287–1289CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zabet NR, Adryan B (2012b) A comprehensive computational model of facilitated diffusion in prokaryotes. Bioinformatics 28:1517–1524CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zabet NR, Adryan B (2013) The effects of transcription factor competition on gene regulation. Front Genet 4:197CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zimmer C, Fabre E (2011) Principles of chromosomal organization: lessons from yeast. J Cell Biol 192:723–733CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zuin J, Dixon JR, van der Reijden MIJA et al (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A 111:996–1001CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nuclear Dynamics ProgrammeBabraham InstituteCambridgeUK
  2. 2.Cambridge Systems Biology Centre, University of CambridgeCambridgeUK

Personalised recommendations