Improving Nitrogen Use Efficient in Crop Plants Using Biotechnology Approaches

  • Perrin H. BeattyEmail author
  • Allen G. Good


Plants require a source of fixed, or biologically reactive nitrogen (N) to produce molecules such as nucleotide bases and amino acids, in order to make macromolecules like DNA and proteins that are then required for the genome, cellular structures and overall growth. Low or insufficient available N limits the plant growth and yield (both biomass and grain) of crop plants. Plants obtain fixed-N from the soil as ammonia, nitrate, urea, amino acids and peptides.


Plant biotechnology Nitrogen use efficiency Fertilizer 


  1. Abiko T, Wakayama M, Kawakami A, Obara M, Kisaka H, Miwa T, Aoki N, Ohsugi R (2010) Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Planta 232:299–311CrossRefPubMedGoogle Scholar
  2. Allen RS, Tilbrook K, Warden AC, Campbell PC, Rolland V, Singh SP, Wood CC (2017) Expression of 16 nitrogenase proteins within the plant mitochondrial matrix. Front Plant Sci 8Google Scholar
  3. Allison; Do you have a Reference for 1995? The other one I can get on Sunday but it is on the work computer. AllenGoogle Scholar
  4. Allison DB, Paultre F, Goran MI, Poehlman ET, Heymsfield SB (1995) Statistical considerations regarding the use of ratios to adjust data. Int J Obes Relat Metab Disord: J Int Assoc Study Obes 19:644–652Google Scholar
  5. Anbessa Y, Juskiw P, Good A, Nyachiro J, Helm J (2010) Selection efficiency across environments in improvement of barley yield for moderately low nitrogen environments. Crop Sci 50:451CrossRefGoogle Scholar
  6. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745CrossRefPubMedGoogle Scholar
  7. Beatty PH, Anbessa Y, Juskiw P, Carroll RT, Wang J, Good AG (2010) Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber. Ann Bot 105:1171–1182CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beatty PH, Carroll RT, Shrawat AK, Guevara D, Good AG (2013) Physiological analysis of nitrogen-efficient rice overexpressing alanine aminotransferase under different N regimes. Botany 91:866–883CrossRefGoogle Scholar
  9. Beatty PH, Fischer JJ, Muench DG, Good AG (2015) Environmental and economic impacts of biological nitrogen-fixing (BNF) cereal crops. In: Biological nitrogen fixation. Wiley, pp 1103–1116Google Scholar
  10. Beatty PH, Good AG (2011) Future prospects for cereals that fix nitrogen. Plant Sci (New York, NY) 333:416–417CrossRefGoogle Scholar
  11. Beatty PH, Klein MS, Fischer JJ, Lewis IA, Muench DG, Good AG (2016) Understanding plant nitrogen metabolism through metabolomics and computational approaches. Plants (Basel) 5Google Scholar
  12. Beatty PH, Shrawat AK, Carroll RT, Zhu T, Good AG (2009) Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. Plant Biotechnol J 7:562–576CrossRefPubMedGoogle Scholar
  13. Beatty PH, Wong JL (2017) Nitrogen use efficiency. In: Encyclopedia of applied plant sciences. Academic PressGoogle Scholar
  14. Bi Y-M, Kant S, Clark J, Gidda S, Ming F, Xu J, Rochon A, Shelp BJ, Hao L, Zhao R, Mullen RT, Zhu T, Rothstein SJ (2009) Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ 32:1749–1760CrossRefPubMedGoogle Scholar
  15. Borlaug N (1972) The green revolution, peace, and humanity. In: Haberman FW (ed) Nobel lectures, peace 1951–1970. AmsterdamGoogle Scholar
  16. Brauer EK, Rochon A, Bi YM, Bozzo GG, Rothstein SJ, Shelp BJ (2011) Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol Plant 141:361–372CrossRefPubMedGoogle Scholar
  17. Buren S, Young EM, Sweeny EA, Lopez-Torrejon G, Veldhuizen M, Voigt CA, Rubio LM (2017) Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae. ACS Synth BiolGoogle Scholar
  18. Burrill, Hanson (1917) Is symbiosis possible between legume bacteria and non legume plants?. University of Illinios, Urbana, IliniosGoogle Scholar
  19. Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X (2017) pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J.
  20. Chen M, Zhao Y, Zhuo C, Lu S, Guo Z (2015) Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnol J 13:482–491CrossRefPubMedGoogle Scholar
  21. Chen X, Chen F, Chen Y, Gao Q, Yang X, Yuan L, Zhang F, Mi G (2013) Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Glob Chang Biol 19:923–936CrossRefPubMedGoogle Scholar
  22. Chiasson DM, Loughlin PC, Mazurkiewicz D, Mohammadidehcheshmeh M, Fedorova EE, Okamoto M, McLean E, Glass ADM, Smith SE, Bisseling T, Tyerman SD, Day DA, Kaiser BN (2014) Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. Proc Nat Acad Sci 111:4814–4819CrossRefPubMedGoogle Scholar
  23. Christiansen MW, Matthewman C, Podzimska-Sroka D, O’Shea C, Lindemose S, Mollegaard NE, Holme IB, Hebelstrup K, Skriver K, Gregersen PL (2016) Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. J Exp Bot 67:5259–5273CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cheon BY, Kim HJ, Oh KH, Bahn SC, Ahn JH, Choi JW et al (2004) Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis. Transgenic Res 13:541–549. Scholar
  25. Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297CrossRefGoogle Scholar
  26. Curatti L, Rubio LM (2014) Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. Plant Sci 225:130–137CrossRefPubMedGoogle Scholar
  27. Curran-Everett D (2013) Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ 37:213–219CrossRefPubMedGoogle Scholar
  28. Davidson EA, Suddick EC, Rice CW, Prokopy LS (2015) More food, low pollution (mo fo lo Po): a grand challenge for the 21st century. J Environ Qual 44:305–311CrossRefPubMedGoogle Scholar
  29. de Carvalho EV, Afférri FS, Peluzio JM, Rotili EA, Dotto MA, de Faria LA (2016) Genetics parameters and association of NUE methods in maize under different nitrogen levels/Parâmetros genéticos e associação de metodologias de EUN no milho sob diferentes doses de nitrogênio 3Google Scholar
  30. Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I (2016) Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 39:329–338CrossRefPubMedPubMedCentralGoogle Scholar
  31. Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Dong G, Qian Q, Li Y (2014) SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. The Plant J 77:547–557CrossRefPubMedGoogle Scholar
  32. El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS ONE 7:e52030CrossRefPubMedPubMedCentralGoogle Scholar
  33. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nature Geosci 1:636–639CrossRefGoogle Scholar
  34. Fischer JJ, Beatty PH, Good AG, Muench DG (2013) Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Sci 210:70–81CrossRefPubMedGoogle Scholar
  35. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  36. Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A, Erisman JW (2014) Nitrogen footprints: past, present and future. Environ Res Lett 9:115003CrossRefGoogle Scholar
  37. Good AG, Beatty PH (2011a) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9:e1001124CrossRefPubMedPubMedCentralGoogle Scholar
  38. Good AG, Beatty PH (2011b) Biotechnological approaches to improving nitrogen use efficiency in plants: alanine aminotransferase as a case study. In: The molecular and physiological basis of nutrient use efficiency in crops, pp 165–191Google Scholar
  39. Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262CrossRefGoogle Scholar
  40. Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605CrossRefGoogle Scholar
  41. Goucher L, Bruce R, Cameron DD, Lenny Koh SC, Horton P (2017) The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat Plants 3:17012CrossRefPubMedGoogle Scholar
  42. Haines A, Harris F, Kasuga F, Machalaba C (2017) Future earth—linking research on health and environmental sustainability. BMJ 357Google Scholar
  43. Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Ann Rev Genet 49:269–289CrossRefPubMedGoogle Scholar
  44. Han M, Wong J, Su T, Beatty PH, Good AG (2016) Identification of nitrogen use efficiency genes in barley: searching for qtls controlling complex physiological traits. Front Plant Sci 7:1587PubMedPubMedCentralGoogle Scholar
  45. Hanke GT, Endo T, Satoh F, Hase T (2008) Altered photosynthetic electron channelling into cyclic electron flow and nitrite assimilation in a mutant of ferredoxin:NADP(H) reductase. Plant, Cell Environ 31:1017–1028CrossRefGoogle Scholar
  46. Hawkesford MJ (2011) An overview of nutrient use efficiency and strategies for crop improvement. In: The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, pp 3–19Google Scholar
  47. Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hsieh M-H, Lam H-M, van de Loo FJ, Coruzzi G (1998) A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Nat Acad Sci 95:13965–13970CrossRefPubMedGoogle Scholar
  49. Ivanov A, Kameka A, Pajak A, Bruneau L, Beyaert R, Hernández-Sebastià C, Marsolais F (2012) Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine. Amino Acids 42:2307–2318CrossRefPubMedGoogle Scholar
  50. Ivleva NB, Groat J, Staub JM, Stephens M (2016) Expression of active subunit of nitrogenase via integration into plant organelle genome. PLoS ONE 11:e0160951CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kindred DR, Milne AE, Webster R, Marchant BP, Sylvester-Bradley R (2014) Exploring the spatial variation in the fertilizer-nitrogen requirement of wheat within fields. J Agric Sci.
  52. Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R (2011) Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J 9:826–837CrossRefGoogle Scholar
  53. Lam H-M, Wong P, Chan H-K, Yam K-M, Chen L, Chow C-M, Coruzzi GM (2003) Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiol 132:926–935CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9:105011CrossRefGoogle Scholar
  55. Lea US, Leydecker M-T, Quilleré I, Meyer C, Lillo C (2006) Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence. Plant Physiol 140:1085–1094CrossRefPubMedPubMedCentralGoogle Scholar
  56. Le Gouis J, Béghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur J Agron 12:163–173CrossRefGoogle Scholar
  57. Leip A, Leach A, Musinguzi P, Tumwesigye T, Olupot G, Stephen Tenywa J, Mudiope J, Hutton O, Cordovil CMDS, Bekunda M, Galloway J (2014) Nitrogen-neutrality: a step towards sustainability. Environ Res Lett 9:115001CrossRefGoogle Scholar
  58. Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp BotGoogle Scholar
  59. Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng Y-Q, Yuan L, Li C (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Nat Acad Sci 110:3167–3172CrossRefPubMedGoogle Scholar
  60. Li XX, Liu Q, Liu XM, Shi HW, Chen SF (2016) Using synthetic biology to increase nitrogenase activity. Microb Cell Fact 15:43CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lin W, Hagen E, Fulcher A, Hren MT, Cheng Z-M (2013) Overexpressing the ZmDof1 gene in Populus does not improve growth and nitrogen assimilation under low-nitrogen conditions. Plant Cell Tissue Organ Cult (PCTOC) 113:51–61CrossRefGoogle Scholar
  62. Lopez-Torrejon G, Jimenez-Vicente E, Buesa JM, Hernandez JA, Verma HK, Rubio LM (2016) Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nat Commun 7:11426CrossRefPubMedPubMedCentralGoogle Scholar
  63. Masle J, Hudson GS, Badger MR (1993) Effects of ambient CO2 concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) Plants transformed with an antisense gene to the small subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol 103:1075–1088CrossRefPubMedPubMedCentralGoogle Scholar
  64. Matsuoka M, Kyozuka J, Shimamoto K, Kano-Murakami Y (1994) The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant J 6:311–319CrossRefPubMedGoogle Scholar
  65. McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025CrossRefPubMedGoogle Scholar
  66. McAllister CH, Good AG (2015) Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS ONE 10:e0121830CrossRefPubMedPubMedCentralGoogle Scholar
  67. McDougall P (2011) The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Crop Life IntGoogle Scholar
  68. Merrick M, Dixon R (1984) Why don’t plants fix nitrogen? In: Trends in biotechnology, pp 162–166Google Scholar
  69. Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu M-H, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané J-M, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ng JM-S, Han M, Beatty PH, Good A (2016) “Genes, Meet Gases”: The role of plant nutrition and genomics in addressing greenhouse gas emissions. In: Edwards D, Batley J (eds) Plant genomics and climate change. Springer, New York, NY, pp 149–172CrossRefGoogle Scholar
  71. Noguero M, Atif RM, Ochatt S, Thompson RD (2013) The role of the DNA-binding one zinc finger (DOF) transcription factor family in plants. Plant Sci 209:32–45CrossRefPubMedGoogle Scholar
  72. Oldroyd GED, Dixon R (2014) Biotechnological solutions to the nitrogen problem. In: Current opinion in biotechnology, pp 19–24Google Scholar
  73. Park S-Y, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y, Lee S-K, Jeong S-W, Seo HS, Koh H-J, Jeon J-S, Park Y-I, Paek N-C (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pena PA, Quach T, Sato S, Ge Z, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente TE (2017) Expression of the maize Dof1 transcription factor in wheat and sorghum. Front Plant Sci 8:434CrossRefPubMedPubMedCentralGoogle Scholar
  75. Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Riviere N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Le Gouis J, Feuillet C, Salse J (2011) Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J 65:745–756CrossRefPubMedGoogle Scholar
  76. Reddy MM, Ulaganathan K (2015) Nitrogen nutrition, its regulation and biotechnological approaches to improve crop productivity. Am J Plant Sci 06:2745–2798CrossRefGoogle Scholar
  77. Rogers C, Oldroyd GE (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot 65:1939–1946CrossRefPubMedGoogle Scholar
  78. Rolletschek H, Hosein F, Miranda M, Heim U, Gotz KP, Schlereth A, Borisjuk L, Saalbach I, Wobus U, Weber H (2005) Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol 137:1236–1249CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rothstein SJ, Bi YM, Coneva V, Han M, Good A (2014) The challenges of commercializing second-generation transgenic crop traits necessitate the development of international public sector research infrastructure. J Exp Bot 65:5673–5682CrossRefPubMedGoogle Scholar
  80. Rubio-Wilhelmi MdM, Sanchez-Rodriguez E, Rosales MA, Blasco B, Rios JJ, Romero L, Blumwald E, Ruiz JM (2011) Cytokinin-dependent improvement in transgenic PSARK:IPT tobacco under nitrogen deficiency. J Agric Food Chem 59:10491–10495CrossRefGoogle Scholar
  81. Sato T, Maekawa S, Yasuda S, Domeki Y, Sueyoshi K, Fujiwara M, Fukao Y, Goto DB, Yamaguchi J (2011) Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis. Plant J 68:137–146CrossRefPubMedGoogle Scholar
  82. Schofield RA, Bi YM, Kant S, Rothstein SJ (2009) Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant, Cell Environ 32:271–285CrossRefGoogle Scholar
  83. Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732CrossRefPubMedGoogle Scholar
  84. Smil V (2004) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production, 1st edn. MIT, Cambridge, MAGoogle Scholar
  85. Strange A, Park J, Bennett R, Phipps R (2008) The use of life-cycle assessment to evaluate the environmental impacts of growing genetically modified, nitrogen use-efficient canola. Plant Biotechnol J 6:337–345CrossRefPubMedGoogle Scholar
  86. Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656CrossRefPubMedGoogle Scholar
  87. Sylvester-Bradley R, Kindred DR (2009) Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J Exp Bot 60:1939–1951CrossRefPubMedGoogle Scholar
  88. Takahashi M, Sasaki Y, Ida S, Morikawa H (2001) Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. Plant Physiol 126:731–741CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi-Kobayashi M, Hayakawa T, Yamaya T (2011) Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci 2Google Scholar
  90. Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120:875–893CrossRefPubMedGoogle Scholar
  91. Thomsen HC, Eriksson D, Møller IS, Schjoerring JK (2014) Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci 19:656–663CrossRefPubMedGoogle Scholar
  92. Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713CrossRefPubMedGoogle Scholar
  93. Vicente EJ, Dean DR (2017) Keeping the nitrogen-fixation dream alive. Proc Nat Acad Sci 114:3009–3011CrossRefPubMedGoogle Scholar
  94. Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374CrossRefPubMedGoogle Scholar
  95. Wang X, Peng F, Li M, Yang L, Li G (2012) Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. J Plant Physiol 169:1173–1182CrossRefPubMedGoogle Scholar
  96. Xu Z, Ma J, Qu C, Hu Y, Hao B, Sun Y, Liu Z, Yang H, Yang C, Wang H, Li Y, Liu G (2017) Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings. Sci Rep 7:45933CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Nat Acad Sci United States Am 101:7833–7838CrossRefGoogle Scholar
  99. Yang J, Worley E, Torres-Jerez I, Miller R, Wang M, Fu C, Wang Z-Y, Tang Y, Udvardi M (2015) PvNAC1 and PvNAC2 Are associated with leaf senescence and nitrogen use efficiency in switchgrass. BioEnerg Res 8:868–880CrossRefGoogle Scholar
  100. Yuan L, Loqué D, Ye F, Frommer WB, von Wirén N (2007) Nitrogen-Dependent Posttranscriptional Regulation of the Ammonium Transporter AtAMT1;1. Plant Physiol 143:732–744CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409CrossRefPubMedGoogle Scholar
  102. Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59PubMedGoogle Scholar
  103. Zhang Z, Xiong S, Wei Y, Meng X, Wang X, Ma X (2017) The role of glutamine synthetase isozymes in enhancing nitrogen use efficiency of N-efficient winter wheat. Sci Rep 7:1000CrossRefPubMedPubMedCentralGoogle Scholar
  104. Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381–1390CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept. OncologyUniversity of AlbertaEdmontonCanada
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations